ترغب بنشر مسار تعليمي؟ اضغط هنا

CO multi-line observations of HH 80-81: a two-component molecular outflow associated with the largest protostellar jet in our Galaxy

58   0   0.0 ( 0 )
 نشر من قبل Keping Qiu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Keping Qiu




اسأل ChatGPT حول البحث

Stretching a length reaching 10 pc projected in the plane of sky, the radio jet associated with Herbig-Haro objects 80 and 81 (HH 80-81) is known as the largest and best collimated protostellar jet in our Galaxy. The nature of the molecular outflow associated with this extraordinary jet remains an unsolved question which is of great interests to our understanding of the relationship between jets and outflows in high-mass star formation. Here we present Atacama Pathfinder EXperiment CO(6-5) and (7-6), James Clerk Maxwell Telescope CO(3-2), Caltech Submillimeter Observatory CO(2-1), and Submillimeter Array CO and $^{13}$CO(2-1) mapping observations of the outflow. We report on the detection of a two-component outflow consisting of a collimated component along the jet path and a wide-angle component with an opening angle of about $30^{circ}$. The gas velocity structure suggests that each of the two components traces part of a primary wind. From LVG calculations of the CO lines, the outflowing gas has a temperature around 88 K, indicating that the gas is being heated by shocks. Based on the CO(6-5) data, the outflow mass is estimated to be a few $M_{odot}$, which is dominated by the wide-angle component. A comparison between the HH 80-81 outflow and other well shaped massive outflows suggests that the opening angle of massive outflows continues to increase over time. Therefore, the mass loss process in the formation of early-B stars seems to be similar to that in low-mass star formation, except that a jet component would disappear as the central source evolves to an ultracompact HII region.



قيم البحث

اقرأ أيضاً

We present several molecular line emission arcsec and subarcsec observations obtained with the Submillimeter Array (SMA) in the direction of the massive protostar IRAS 18162-2048, the exciting source of HH 80-81. The data clearly indicates the pres ence of a compact (radius~425-850 AU) SO2 structure, enveloping the more compact (radius~150 AU) 1.4 millimeter dust emission (reported in a previous paper). The emission spatially coincides with the position of the prominent thermal radio jet which terminates at the HH 80-81 and HH 80N Herbig-Haro objects. Furthermore, the molecular emission is elongated in the direction perpendicular to the axis of the thermal radio jet, suggesting a disk-like structure. We derive a total dynamic mass (disk-like structure and protostar) of 11-15 msun. The SO2 spectral line data also allow us to constrain the structure temperature between 120-160 K and the volume density > 2x10^9 cm-3. We also find that such a rotating flattened system could be unstable due to gravitational disturbances. The data from C17O line emission show a dense core within this star-forming region. Additionally, the H2CO and the SO emissions appear clumpy and trace the disk-like structure, a possible interaction between a molecular core and the outflows, and in part, the cavity walls excavated by the thermal radio jet.
(abridged) The HH 80/81/80N jet extends from the HH 80 object to the recently discovered Source 34 and has a total projected jet size of 10.3 pc, constituting the largest collimated radio-jet system known so far. It is powered by IRAS 18162-2048 asso ciated with a massive young stellar object. We report 6 cm JVLA observations that, compared with previous 6 cm VLA observations carried out in 1989, allow us to derive proper motions of the HH 80, HH 81 and HH 80N radio knots located about 2.5 pc away in projection from the powering source. For the first time, we measure proper motions of the optically obscured HH 80N object providing evidence that HH 81, 80 and 80N are associated with the same radio-jet. We derived tangential velocities of these HH objects between 260 and 350 km/s, significantly lower than those for the radio knots of the jet close to the powering source (600-1400 km/s) derived in a previous work, suggesting that the jet material is slowing down due to a strong interaction with the ambient medium. The HH 80 and HH 80N emission at 6 cm is, at least in part, probably synchrotron radiation produced by relativistic electrons in a magnetic field of 1 mG. If these electrons are accelerated in a reverse adiabatic shock, we estimate a jet total density of $lesssim1000$ cm$^{-3}$. All these features are consistent with a jet emanating from a high mass protostar and make evident its capability of accelerating particles up to relativistic velocities.
We present subarcsecond angular resolution observations carried out with the Submillimeter Array (SMA) at 880 $mu$m centered at the B0-type protostar GGD27~MM1, the driving source of the parsec scale HH 80-81 jet. We constrain its polarized continuum emission to be $lesssim0.8%$ at this wavelength. Its submm spectrum is dominated by sulfur-bearing species tracing a rotating disk--like structure (SO and SO$_2$ isotopologues mainly), but also shows HCN-bearing and CH$_3$OH lines, which trace the disk and the outflow cavity walls excavated by the HH 80-81 jet. The presence of many sulfurated lines could indicate the presence of shocked gas at the disks centrifugal barrier or that MM1 is a hot core at an evolved stage. The resolved SO$_2$ emission traces very well the disk kinematics and we fit the SMA observations using a thin-disk Keplerian model, which gives the inclination (47$^{circ}$), the inner ($lesssim170$ AU) and outer ($sim950-1300$~AU) radii and the disks rotation velocity (3.4 km s$^{-1}$ at a putative radius of 1700 AU). We roughly estimate a protostellar dynamical mass of 4-18msun. MM2 and WMC cores show, comparatively, an almost empty spectra suggesting that they are associated with extended emission detected in previous low-angular resolution observations, and therefore indicating youth (MM2) or the presence of a less massive object (WMC).
Radio emission from protostellar jets is usually dominated by free-free emission from thermal electrons. However, in some cases, it has been proposed that non-thermal emission could also be present. This additional contribution from non-thermal emiss ion has been inferred through negative spectral indices at centimeter wavelengths in some regions of the radio jets. In the case of HH 80-81, one of the most powerful protostellar jets known, linearly polarized emission has also been detected, revealing that the non-thermal emission is of synchrotron nature from a population of relativistic particles in the jet. This result implies that an acceleration mechanism should be taking place in some parts of the jet. Here, we present new high sensitivity and high angular resolution radio observations at several wavelengths (in the 3-20 cm range) of the HH80-81 radio jet. These new observations represent an improvement in sensitivity and angular resolution by a factor of $sim$10 with respect to previous observations. This allows us to resolve the morphology of the radio jet, and to study the different emission mechanisms involved through spectral index maps. We conclude that synchrotron emission in this jet arises from an extended component detected at low frequencies and from the termination points of the jet, where strong shocks against the ambient medium can produce efficient particle acceleration.
Ten protostellar outflows in the Orion molecular clouds were mapped in the $^{12}$CO/$^{13}$CO ${J=6rightarrow5}$ and $^{12}$CO ${J=7rightarrow6}$ lines. The maps of these mid-$J$ CO lines have an angular resolution of about 10$$ and a typical field size of about 100$$. Physical parameters of the molecular outflows were derived, including mass transfer rates, kinetic luminosities, and outflow forces. The outflow sample was expanded by re-analyzing archival data of nearby low-luminosity protostars, to cover a wide range of bolometric luminosities. Outflow parameters derived from other transitions of CO were compared. The mid-$J$ ($J_{rm up} approx 6$) and low-$J$ ($J_{rm up} leq 3$) CO line wings trace essentially the same outflow component. By contrast, the high-$J$ (up to $J_{rm up} approx 50$) line-emission luminosity of CO shows little correlation with the kinetic luminosity from the ${J=6rightarrow5}$ line, which suggests that they trace distinct components. The low/mid-$J$ CO line wings trace long-term outflow behaviors while the high-$J$ CO lines are sensitive to short-term activities. The correlations between the outflow parameters and protostellar properties are presented, which shows that the strengths of molecular outflows increase with bolometric luminosity and envelope mass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا