ترغب بنشر مسار تعليمي؟ اضغط هنا

Proper motions of the outer knots of the HH 80/81/80N radio-jet

125   0   0.0 ( 0 )
 نشر من قبل Josep-Maria Masqu\\'e Prof.
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(abridged) The HH 80/81/80N jet extends from the HH 80 object to the recently discovered Source 34 and has a total projected jet size of 10.3 pc, constituting the largest collimated radio-jet system known so far. It is powered by IRAS 18162-2048 associated with a massive young stellar object. We report 6 cm JVLA observations that, compared with previous 6 cm VLA observations carried out in 1989, allow us to derive proper motions of the HH 80, HH 81 and HH 80N radio knots located about 2.5 pc away in projection from the powering source. For the first time, we measure proper motions of the optically obscured HH 80N object providing evidence that HH 81, 80 and 80N are associated with the same radio-jet. We derived tangential velocities of these HH objects between 260 and 350 km/s, significantly lower than those for the radio knots of the jet close to the powering source (600-1400 km/s) derived in a previous work, suggesting that the jet material is slowing down due to a strong interaction with the ambient medium. The HH 80 and HH 80N emission at 6 cm is, at least in part, probably synchrotron radiation produced by relativistic electrons in a magnetic field of 1 mG. If these electrons are accelerated in a reverse adiabatic shock, we estimate a jet total density of $lesssim1000$ cm$^{-3}$. All these features are consistent with a jet emanating from a high mass protostar and make evident its capability of accelerating particles up to relativistic velocities.

قيم البحث

اقرأ أيضاً

We present subarcsecond angular resolution observations carried out with the Submillimeter Array (SMA) at 880 $mu$m centered at the B0-type protostar GGD27~MM1, the driving source of the parsec scale HH 80-81 jet. We constrain its polarized continuum emission to be $lesssim0.8%$ at this wavelength. Its submm spectrum is dominated by sulfur-bearing species tracing a rotating disk--like structure (SO and SO$_2$ isotopologues mainly), but also shows HCN-bearing and CH$_3$OH lines, which trace the disk and the outflow cavity walls excavated by the HH 80-81 jet. The presence of many sulfurated lines could indicate the presence of shocked gas at the disks centrifugal barrier or that MM1 is a hot core at an evolved stage. The resolved SO$_2$ emission traces very well the disk kinematics and we fit the SMA observations using a thin-disk Keplerian model, which gives the inclination (47$^{circ}$), the inner ($lesssim170$ AU) and outer ($sim950-1300$~AU) radii and the disks rotation velocity (3.4 km s$^{-1}$ at a putative radius of 1700 AU). We roughly estimate a protostellar dynamical mass of 4-18msun. MM2 and WMC cores show, comparatively, an almost empty spectra suggesting that they are associated with extended emission detected in previous low-angular resolution observations, and therefore indicating youth (MM2) or the presence of a less massive object (WMC).
Radio emission from protostellar jets is usually dominated by free-free emission from thermal electrons. However, in some cases, it has been proposed that non-thermal emission could also be present. This additional contribution from non-thermal emiss ion has been inferred through negative spectral indices at centimeter wavelengths in some regions of the radio jets. In the case of HH 80-81, one of the most powerful protostellar jets known, linearly polarized emission has also been detected, revealing that the non-thermal emission is of synchrotron nature from a population of relativistic particles in the jet. This result implies that an acceleration mechanism should be taking place in some parts of the jet. Here, we present new high sensitivity and high angular resolution radio observations at several wavelengths (in the 3-20 cm range) of the HH80-81 radio jet. These new observations represent an improvement in sensitivity and angular resolution by a factor of $sim$10 with respect to previous observations. This allows us to resolve the morphology of the radio jet, and to study the different emission mechanisms involved through spectral index maps. We conclude that synchrotron emission in this jet arises from an extended component detected at low frequencies and from the termination points of the jet, where strong shocks against the ambient medium can produce efficient particle acceleration.
Here we present deep (16 mumJy), very high (40 mas) angular resolution 1.14 mm, polarimetric, Atacama Large Millimeter/submillimeter Array (ALMA) observations towards the massive protostar driving the HH 80-81 radio jet. The observations clearly reso lve the disk oriented perpendicular to the radio jet, with a radius of ~0.171 arcsec (~291 au at 1.7 kpc distance). The continuum brightness temperature, the intensity profile, and the polarization properties clearly indicate that the disk is optically thick for a radius of R<170 au. The linear polarization of the dust emission is detected almost all along the disk and its properties suggest that dust polarization is produced mainly by self-scattering. However, the polarization pattern presents a clear differentiation between the inner (optically thick) part of the disk and the outer (optically thin) region of the disk, with a sharp transition that occurs at a radius of 0.1 arcsec (~170 au). The polarization characteristics of the inner disk suggest that dust settling has not occurred yet with a maximum dust grain size between 50 and 500 mum. The outer part of the disk has a clear azimuthal pattern but with a significantly higher polarization fraction compared to the inner disk. This pattern is broadly consistent with self-scattering of a radiation field that is beamed radially outward, as expected in the optically thin outer region, although contribution from non-spherical grains aligned with respect to the radiative flux cannot be excluded.
We describe a new method for determining proper motions of extended objects, and a pipeline developed for the application of this method. We then apply this method to an analysis of four epochs of [S~II] HST images of the HH~1 jet (covering a period of $sim 20$~yr). We determine the proper motions of the knots along the jet, and make a reconstruction of the past ejection velocity time-variability (assuming ballistic knot motions). This reconstruction shows an acceleration of the ejection velocities of the jet knots, with higher velocities at more recent times. This acceleration will result in an eventual merging of the knots in $sim 450$~yr and at a distance of $sim 80$ from the outflow source, close to the present-day position of HH~1.
The infrared source known as Orion n was detected in 1980 with observations made with the 3.8-m United Kingdom Infrared Telescope. About two decades later, sensitive observations made with the Very Large Array revealed the presence of a mJy double ra dio source apparently coincident in position with the infrared source n. The radio source was assumed to be the counterpart of the infrared source. However, over the years it has been concluded that the radio source shows large proper motions to the south while the infrared source n is stationary. Here we reanalyze the proper motions of the radio source adding both older and newer VLA observations than previously used. We confirm the proper motions of the radio source that at present no longer coincides positionally with the infrared source. The solution to this problem is, most probably, that the infrared source n and the radio source are not the same object: the infrared source is a stationary object in the region while the radio counterpart is moving as a result of the explosion that took place in this region some 500 years ago and that expelled large amounts of molecular gas as well as several compact sources. Considering the paper where it was first reported, we refer to this double radio source as Orion MR. In addition, we use these new observations to fully confirm the large proper motions of the sources IRc23 and Zapata 11. Together with sources BN, I, Orion MR, and x, there are at least six compact sources that recede from a point in common in Orion BN/KL. However, IRc23 is peculiar in that its ejection age appears to be only $sim$300 years. The relatively large number of sources rules out as a possible mechanism the classic three-body scenario since then only two escaping bodies are expected: a tight binary plus the third star involved in the encounter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا