ﻻ يوجد ملخص باللغة العربية
We investigate the possibility of detecting planetary or stellar companions orbiting white dwarf binaries using the LISA gravitational radiation detector. Specifically, we consider the acceleration of the barycenter of the white dwarf binary due to the orbiting third body as well as the effect of changes in the tidal field across the binary due to the perturbers eccentric orbit. We find that the movement of the barycenter is detectable for both stellar and planetary mass objects. If circumbinary planets occur with frequencies similar to gas giant planets around isolated main sequence stars, then we expect to find of order 10 such planets in four years of LISA observations. For a longer, ten-year mission the accessible parameter space for planetary mass, orbital period, and binary orbital period grows and LISAs associated yield increases to ~100 expected detections.
Recently, Tamanini & Danielski (2019) discussed the possibility to detect circumbinary exoplanets (CBPs) orbiting double white dwarfs (DWDs) with the Laser Interferometer Space Antenna (LISA). Extending their methods and criteria, we discuss the pros
To date more than 3500 exoplanets have been discovered orbiting a large variety of stars. Due to the sensitivity limits of the currently used detection techniques, these planets populate zones restricted either to the solar neighbourhood or towards t
Cunha et al. (2018) recently reexamined the possibility of detecting gravitational waves from exoplanets, claiming that three ultra-short period systems would be observable by LISA. We revisit their analysis and conclude that the currently known exop
Stellar-mass binary black holes (BBHs) may merge in the vicinity of a supermassive black hole (SMBH). It is suggested that the gravitational-wave (GW) emitted by a BBH has a high probability to be lensed by the SMBH if the BBHs orbit around the SMBH
We explore the prospects for the detection of giant circumbinary exoplanets and brown dwarfs (BDs) orbiting Galactic double white dwarfs binaries (DWDs) with the Laser Interferometer Space Antenna (LISA). By assuming an occurrence rate of 50%, motiva