ترغب بنشر مسار تعليمي؟ اضغط هنا

Prospects for detecting exoplanets around double white dwarfs with LISA and Taiji

145   0   0.0 ( 0 )
 نشر من قبل Lijing Shao
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, Tamanini & Danielski (2019) discussed the possibility to detect circumbinary exoplanets (CBPs) orbiting double white dwarfs (DWDs) with the Laser Interferometer Space Antenna (LISA). Extending their methods and criteria, we discuss the prospects for detecting exoplanets around DWDs not only by LISA, but also by Taiji, a Chinese space-borne gravitational-wave (GW) mission which has a slightly better sensitivity at low frequencies. We first explore how different binary masses and mass ratios affect the abilities of LISA and Taiji to detect CBPs. Second, for certain known detached DWDs with high signal-to-noise ratios, we quantify the possibility of CBP detections around them. Third, based on the DWD population obtained from the Mock LISA Data Challenge, we present basic assessments of the CBP detections in our Galaxy during a 4-year mission time for LISA and Taiji. We discuss the constraints on the detectable zone of each system, as well as the distributions of the inner/outer edge of the detectable zone. Based on the DWD population, we further inject two different planet distributions with an occurrence rate of $50%$ and constrain the total detection rates. We finally briefly discuss the prospects for detecting habitable CBPs around DWDs with a simplified model. These results can provide helpful inputs for upcoming exoplanetary projects and help analyze planetary systems after the common envelope phase.



قيم البحث

اقرأ أيضاً

149 - S. Stock , E. Nagel , J. Kemmer 2020
We announce the discovery of two planets orbiting the M dwarfs GJ 251 ($0.360pm0.015$ M$_odot$) and HD 238090 ($0.578pm0.021$ M$_odot$) based on CARMENES radial velocity (RV) data. In addition, we independently confirm with CARMENES data the existenc e of Lalande 21185 b, a planet that has recently been discovered with the SOPHIE spectrograph. All three planets belong to the class of warm or temperate super-Earths and share similar properties. The orbital periods are 14.24 d, 13.67 d, and 12.95 d and the minimum masses are $4.0pm0.4$ $M_oplus$, $6.9pm0.9$ $M_oplus$, and $2.7pm0.3$ $M_oplus$ for GJ 251 b, HD 238090 b, and Lalande 21185 b, respectively. Based on the orbital and stellar properties, we estimate equilibrium temperatures of $351.0pm1.4$ K for GJ 251 b, $469.6pm2.6$ K for HD 238090 b, and $370.1pm6.8$ K for Lalande 21185 b. For the latter we resolve the daily aliases that were present in the SOPHIE data and that hindered an unambiguous determination of the orbital period. We find no significant signals in any of our spectral activity indicators at the planetary periods. The RV observations were accompanied by contemporaneous photometric observations. We derive stellar rotation periods of $122.1pm2.2$ d and $96.7pm3.7$ d for GJ 251 and HD 238090, respectively. The RV data of all three stars exhibit significant signals at the rotational period or its first harmonic. For GJ 251 and Lalande 21185, we also find long-period signals around 600 d, and 2900 d, respectively, which we tentatively attribute to long-term magnetic cycles. We apply a Bayesian approach to carefully model the Keplerian signals simultaneously with the stellar activity using Gaussian process regression models and extensively search for additional significant planetary signals hidden behind the stellar activity.
76 - V. Korol , S. Toonen , A. Klein 2020
Milky Way dwarf satellites are unique objects that encode the early structure formation and therefore represent a window into the high redshift Universe. So far, their study was conducted using electromagnetic waves only. The future Laser Interferome ter Space Antenna (LISA) has the potential to reveal Milky Way satellites in gravitational waves emitted by double white dwarf (DWD) binaries. We investigate gravitational wave (GW) signals detectable by LISA as a possible tool for the identification and characterisation of the Milky Way satellites. We use the binary population synthesis technique to model the population of DWDs in dwarf satellites and we assess the impact on the number of LISA detections when making changes to the total stellar mass, distance, star formation history and metallicity of satellites. We calibrate predictions for the known Milky Way satellites on their observed properties. We find that DWDs emitting at frequencies $gtrsim 3,$mHz can be detected in Milky Way satellites at large galactocentric distances. The number of these high frequency DWDs per satellite primarily depends on its mass, distance, age and star formation history, and only mildly depends on the other assumptions regarding their evolution such as metallicity. We find that dwarf galaxies with $M_star>10^6,$M$_{odot}$ can host detectable LISA sources with a number of detections that scales linearly with the satellites mass. We forecast that out of the known satellites, Sagittarius, Fornax, Sculptor and the Magellanic Clouds can be detected with LISA. As an all-sky survey that does not suffer from contamination and dust extinction, LISA will provide observations of the Milky Way and dwarf satellites galaxies valuable for Galactic archaeology and near-field cosmology.
High contrast direct imaging of exoplanets can provide many important observables, including measurements of the orbit, spectra that probe the lower layers of the atmosphere, and phase variations of the planet, but cannot directly measure planet radi us or mass. Our future understanding of directly imaged exoplanets will therefore rely on extrapolated models of planetary atmospheres and bulk composition, which need robust calibration. We estimate the population of extrasolar planets that could serve as calibrators for these models. Critically, this population of standard planets must be accessible to both direct imaging and the transit method, allowing for radius measurement. We show that the search volume of a direct imaging mission eventually overcomes the transit probability falloff with semi-major axis, so that as long as cold planets are not exceedingly rare, the population of transiting planets and directly imageable planets overlaps. Using current extrapolations of Kepler occurrence rates, we estimate that ~8 standard planets could be characterized shortward of 800 nm with an ambitious future direct imaging mission like LUVOIR-A and several dozen could be detected at V band. We show the design space that would expand the sample size and discuss the extent to which ground- and space-based surveys could detect this small but crucial population of planets.
We explore the prospects for the detection of giant circumbinary exoplanets and brown dwarfs (BDs) orbiting Galactic double white dwarfs binaries (DWDs) with the Laser Interferometer Space Antenna (LISA). By assuming an occurrence rate of 50%, motiva ted by white dwarf pollution observations, we built a Galactic synthetic population of P-type giant exoplanets and BDs orbiting DWDs. We carried this out by injecting different sub-stellar populations, with various mass and orbital separation characteristics, into the DWD population used in the LISA mission proposal. We then performed a Fisher matrix analysis to measure how many of these three-body systems show a periodic Doppler-shifted gravitational wave perturbation detectable by LISA. We report the number of circumbinary planets (CBPs) and (BDs) that can be detected by LISA for various combinations of mass and semi-major axis distributions. We identify pessimistic and optimistic scenarios corresponding, respectively, to 3 and 83 (14 and 2218) detections of CBPs (BDs), observed during the length of the nominal LISA mission. These detections are distributed all over the Galaxy following the underlying DWD distribution, and they are biased towards DWDs with higher LISA signal-to-noise ratio and shorter orbital period. Finally, we show that if LISA were to be extended for four more years, the number of systems detected will be more than doubled in both the optimistic and pessimistic scenarios. Our results present promising prospects for the detection of post-main sequence exoplanets and BDs, showing that gravitational waves can prove the existence of these populations over the totality of the Milky Way. Detections by LISA will deepen our knowledge on the life of exoplanets subsequent to the most extreme evolution phases of their hosts, clarifying whether new phases of planetary formation take place later in the life of the stars.
252 - S.Stock , J.Kemmer , S.Reffert 2020
The nearby ultra-compact multiplanetary system YZ Ceti consists of at least three planets. The orbital period of each planet is the subject of discussion in the literature due to strong aliasing in the radial velocity data. The stellar activity of th is M dwarf also hampers significantly the derivation of the planetary parameters. With an additional 229 radial velocity measurements obtained since the discovery publication, we reanalyze the YZ Ceti system and resolve the alias issues. We use model comparison in the framework of Bayesian statistics and periodogram simulations based on a method by Dawson and Fabrycky to resolve the aliases. We discuss additional signals in the RV data, and derive the planetary parameters by simultaneously modeling the stellar activity with a Gaussian process regression model. To constrain the planetary parameters further we apply a stability analysis on our ensemble of Keplerian fits. We resolve the aliases: the three planets orbit the star with periods of $2.02$ d, $3.06$ d, and $4.66$ d. We also investigate an effect of the stellar rotational signal on the derivation of the planetary parameters, in particular the eccentricity of the innermost planet. Using photometry we determine the stellar rotational period to be close to $68$ d. From the absence of a transit event with TESS, we derive an upper limit of the inclination of $i_mathrm{max} = 87.43$ deg. YZ Ceti is a prime example of a system where strong aliasing hindered the determination of the orbital periods of exoplanets. Additionally, stellar activity influences the derivation of planetary parameters and modeling them correctly is important for the reliable estimation of the orbital parameters in this specific compact system. Stability considerations then allow additional constraints to be placed on the planetary parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا