ﻻ يوجد ملخص باللغة العربية
We obtained high temporal resolution spectroscopy of the unusual binary system AR Sco covering nearly an orbit. The H$alpha$ emission shows a complex line structure similar to that seen in some polars during quiescence. Such emission is thought to be due to long-lived prominences originating on the red dwarf. A difference between AR Sco and these other systems is that the white dwarf in AR Sco is rapidly spinning relative to the orbital period. Slingshot prominences stable at 3 to 5 stellar radii require surface magnetic fields between 100 and 500 G. This is comparable to the estimated WD magnetic field strength near the surface of the secondary. Our time-resolved spectra also show emission fluxes, line equivalent widths, and continuum color varying over the orbit and the beat/spin periods of the system. During much of the orbit, the optical spectral variations are consistent with synchrotron emission with the highest energy electrons cooling between pulses. On the time-scale of the beat/spin period we detect red and blue-shifted H$alpha$ emission flashes that reach velocities of 700 km/s. Red-shifted Balmer emission flashes are correlated with the bright phases of the continuum beat pulses while blue-shifted flashes appear to prefer the time of minimum in the beat light curve. We propose that much of the energy generated in AR Sco comes from fast magnetic reconnection events occurring near the inward face of the secondary and we show that the energy generated by magnetic reconnection can account for the observed excess luminosity from the system.
The variable star AR Sco was recently discovered to pulse in brightness every 1.97 min from ultraviolet wavelengths into the radio regime. The system is composed of a cool, low-mass star in a tight, 3.55 hr orbit with a more massive white dwarf. Here
We analyze long-cadence Kepler K2 observations of AR Sco from 2014, along with survey photometry obtained between 2005 and 2016 by the Catalina Real-Time Sky Survey and the All-Sky Automated Survey for Supernovae. The K2 data show the orbital modulat
The compact object in the interacting binary AR Sco has widely been presumed to be a rapidly rotating, magnetized white dwarf (WD), but it has never been detected directly. Isolating its spectrum has proven difficult because the spin-down of the WD g
We report a study of the X-ray emission from the white dwarf/M-type star binary system AR Scorpii using archival data taken in 2016-2020. It has been known that the X-ray emission is dominated by the optically thin thermal plasma emission, and its fl
The binary system AR Scorpii hosts an M-type main sequence cool star orbiting around a magnetic white dwarf in the Milky Way Galaxy. The broadband non-thermal emission over radio, optical and X-ray wavebands observed from AR Scorpii indicates strong