ﻻ يوجد ملخص باللغة العربية
We analyze long-cadence Kepler K2 observations of AR Sco from 2014, along with survey photometry obtained between 2005 and 2016 by the Catalina Real-Time Sky Survey and the All-Sky Automated Survey for Supernovae. The K2 data show the orbital modulation to have been fairly stable during the 78 days of observations, but we detect aperiodic deviations from the average waveform with an amplitude of ~2% on a timescale of a few days. A comparison of the K2 data with the survey photometry reveals that the orbital waveform gradually changed between 2005 and 2010, with the orbital maximum shifting to earlier phases. We compare these photometric variations with proposed models of this unusual system.
We obtained high temporal resolution spectroscopy of the unusual binary system AR Sco covering nearly an orbit. The H$alpha$ emission shows a complex line structure similar to that seen in some polars during quiescence. Such emission is thought to be
The variable star AR Sco was recently discovered to pulse in brightness every 1.97 min from ultraviolet wavelengths into the radio regime. The system is composed of a cool, low-mass star in a tight, 3.55 hr orbit with a more massive white dwarf. Here
We report a study of the X-ray emission from the white dwarf/M-type star binary system AR Scorpii using archival data taken in 2016-2020. It has been known that the X-ray emission is dominated by the optically thin thermal plasma emission, and its fl
The compact object in the interacting binary AR Sco has widely been presumed to be a rapidly rotating, magnetized white dwarf (WD), but it has never been detected directly. Isolating its spectrum has proven difficult because the spin-down of the WD g
The binary system AR Scorpii hosts an M-type main sequence cool star orbiting around a magnetic white dwarf in the Milky Way Galaxy. The broadband non-thermal emission over radio, optical and X-ray wavebands observed from AR Scorpii indicates strong