ترغب بنشر مسار تعليمي؟ اضغط هنا

SPLAT: Semantic Pixel-Level Adaptation Transforms for Detection

103   0   0.0 ( 0 )
 نشر من قبل Eric Tzeng
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Domain adaptation of visual detectors is a critical challenge, yet existing methods have overlooked pixel appearance transformations, focusing instead on bootstrapping and/or domain confusion losses. We propose a Semantic Pixel-Level Adaptation Transform (SPLAT) approach to detector adaptation that efficiently generates cross-domain image pairs. Our model uses aligned-pair and/or pseudo-label losses to adapt an object detector to the target domain, and can learn transformations with or without densely labeled data in the source (e.g. semantic segmentation annotations). Without dense labels, as is the case when only detection labels are available in the source, transformations are learned using CycleGAN alignment. Otherwise, when dense labels are available we introduce a more efficient cycle-free method, which exploits pixel-level semantic labels to condition the training of the transformation network. The end task is then trained using detection box labels from the source, potentially including labels inferred on unlabeled source data. We show both that pixel-level transforms outperform prior approaches to detector domain adaptation, and that our cycle-free method outperforms prior models for unconstrained cycle-based learning of generic transformations while running 3.8 times faster. Our combined model improves on prior detection baselines by 12.5 mAP adapting from Sim 10K to Cityscapes, recovering over 50% of the missing performance between the unadapted baseline and the labeled-target upper bound.



قيم البحث

اقرأ أيضاً

Collecting well-annotated image datasets to train modern machine learning algorithms is prohibitively expensive for many tasks. One appealing alternative is rendering synthetic data where ground-truth annotations are generated automatically. Unfortun ately, models trained purely on rendered images often fail to generalize to real images. To address this shortcoming, prior work introduced unsupervised domain adaptation algorithms that attempt to map representations between the two domains or learn to extract features that are domain-invariant. In this work, we present a new approach that learns, in an unsupervised manner, a transformation in the pixel space from one domain to the other. Our generative adversarial network (GAN)-based method adapts source-domain images to appear as if drawn from the target domain. Our approach not only produces plausible samples, but also outperforms the state-of-the-art on a number of unsupervised domain adaptation scenarios by large margins. Finally, we demonstrate that the adaptation process generalizes to object classes unseen during training.
Domain adaptation (DA) paves the way for label annotation and dataset bias issues by the knowledge transfer from a label-rich source domain to a related but unlabeled target domain. A mainstream of DA methods is to align the feature distributions of the two domains. However, the majority of them focus on the entire image features where irrelevant semantic information, e.g., the messy background, is inevitably embedded. Enforcing feature alignments in such case will negatively influence the correct matching of objects and consequently lead to the semantically negative transfer due to the confusion of irrelevant semantics. To tackle this issue, we propose Semantic Concentration for Domain Adaptation (SCDA), which encourages the model to concentrate on the most principal features via the pair-wise adversarial alignment of prediction distributions. Specifically, we train the classifier to class-wisely maximize the prediction distribution divergence of each sample pair, which enables the model to find the region with large differences among the same class of samples. Meanwhile, the feature extractor attempts to minimize that discrepancy, which suppresses the features of dissimilar regions among the same class of samples and accentuates the features of principal parts. As a general method, SCDA can be easily integrated into various DA methods as a regularizer to further boost their performance. Extensive experiments on the cross-domain benchmarks show the efficacy of SCDA.
This paper addresses semi-supervised semantic segmentation by exploiting a small set of images with pixel-level annotations (strong supervisions) and a large set of images with only image-level annotations (weak supervisions). Most existing approache s aim to generate accurate pixel-level labels from weak supervisions. However, we observe that those generated labels still inevitably contain noisy labels. Motivated by this observation, we present a novel perspective and formulate this task as a problem of learning with pixel-level label noise. Existing noisy label methods, nevertheless, mainly aim at image-level tasks, which can not capture the relationship between neighboring labels in one image. Therefore, we propose a graph based label noise detection and correction framework to deal with pixel-level noisy labels. In particular, for the generated pixel-level noisy labels from weak supervisions by Class Activation Map (CAM), we train a clean segmentation model with strong supervisions to detect the clean labels from these noisy labels according to the cross-entropy loss. Then, we adopt a superpixel-based graph to represent the relations of spatial adjacency and semantic similarity between pixels in one image. Finally we correct the noisy labels using a Graph Attention Network (GAT) supervised by detected clean labels. We comprehensively conduct experiments on PASCAL VOC 2012, PASCAL-Context and MS-COCO datasets. The experimental results show that our proposed semi supervised method achieves the state-of-the-art performances and even outperforms the fully-supervised models on PASCAL VOC 2012 and MS-COCO datasets in some cases.
The real human attention is an interactive activity between our visual system and our brain, using both low-level visual stimulus and high-level semantic information. Previous image salient object detection (SOD) works conduct their saliency predicti ons in a multi-task manner, i.e., performing pixel-wise saliency regression and segmentation-like saliency refinement at the same time, which degenerates their feature backbones in revealing semantic information. However, given an image, we tend to pay more attention to those regions which are semantically salient even in the case that these regions are perceptually not the most salient ones at first glance. In this paper, we divide the SOD problem into two sequential tasks: 1) we propose a lightweight, weakly supervised deep network to coarsely locate those semantically salient regions first; 2) then, as a post-processing procedure, we selectively fuse multiple off-the-shelf deep models on these semantically salient regions as the pixel-wise saliency refinement. In sharp contrast to the state-of-the-art (SOTA) methods that focus on learning pixel-wise saliency in single image using perceptual clues mainly, our method has investigated the object-level semantic ranks between multiple images, of which the methodology is more consistent with the real human attention mechanism. Our method is simple yet effective, which is the first attempt to consider the salient object detection mainly as an object-level semantic re-ranking problem.
144 - Zhenchao Jin , Bin Liu , Qi Chu 2021
Co-occurrent visual pattern makes aggregating contextual information a common paradigm to enhance the pixel representation for semantic image segmentation. The existing approaches focus on modeling the context from the perspective of the whole image, i.e., aggregating the image-level contextual information. Despite impressive, these methods weaken the significance of the pixel representations of the same category, i.e., the semantic-level contextual information. To address this, this paper proposes to augment the pixel representations by aggregating the image-level and semantic-level contextual information, respectively. First, an image-level context module is designed to capture the contextual information for each pixel in the whole image. Second, we aggregate the representations of the same category for each pixel where the category regions are learned under the supervision of the ground-truth segmentation. Third, we compute the similarities between each pixel representation and the image-level contextual information, the semantic-level contextual information, respectively. At last, a pixel representation is augmented by weighted aggregating both the image-level contextual information and the semantic-level contextual information with the similarities as the weights. Integrating the image-level and semantic-level context allows this paper to report state-of-the-art accuracy on four benchmarks, i.e., ADE20K, LIP, COCOStuff and Cityscapes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا