ﻻ يوجد ملخص باللغة العربية
Domain adaptation (DA) paves the way for label annotation and dataset bias issues by the knowledge transfer from a label-rich source domain to a related but unlabeled target domain. A mainstream of DA methods is to align the feature distributions of the two domains. However, the majority of them focus on the entire image features where irrelevant semantic information, e.g., the messy background, is inevitably embedded. Enforcing feature alignments in such case will negatively influence the correct matching of objects and consequently lead to the semantically negative transfer due to the confusion of irrelevant semantics. To tackle this issue, we propose Semantic Concentration for Domain Adaptation (SCDA), which encourages the model to concentrate on the most principal features via the pair-wise adversarial alignment of prediction distributions. Specifically, we train the classifier to class-wisely maximize the prediction distribution divergence of each sample pair, which enables the model to find the region with large differences among the same class of samples. Meanwhile, the feature extractor attempts to minimize that discrepancy, which suppresses the features of dissimilar regions among the same class of samples and accentuates the features of principal parts. As a general method, SCDA can be easily integrated into various DA methods as a regularizer to further boost their performance. Extensive experiments on the cross-domain benchmarks show the efficacy of SCDA.
Domain adaptation is an important but challenging task. Most of the existing domain adaptation methods struggle to extract the domain-invariant representation on the feature space with entangling domain information and semantic information. Different
Unsupervised Domain Adaptation for semantic segmentation has gained immense popularity since it can transfer knowledge from simulation to real (Sim2Real) by largely cutting out the laborious per pixel labeling efforts at real. In this work, we presen
Unsupervised Domain Adaptation (UDA) can tackle the challenge that convolutional neural network(CNN)-based approaches for semantic segmentation heavily rely on the pixel-level annotated data, which is labor-intensive. However, existing UDA approaches
Unsupervised domain adaption has proven to be an effective approach for alleviating the intensive workload of manual annotation by aligning the synthetic source-domain data and the real-world target-domain samples. Unfortunately, mapping the target-d
Unsupervised domain adaptation enables to alleviate the need for pixel-wise annotation in the semantic segmentation. One of the most common strategies is to translate images from the source domain to the target domain and then align their marginal di