ﻻ يوجد ملخص باللغة العربية
We describe a setup and procedures for contactless optical 3D-metrology of silicon micro-strip sensors. Space points are obtained by video microscopy and a high precision XY-table. The XY-dimensions are obtained from the movement of the table and pattern recognition, while the Z-dimension results from a Fast Fourier Transformation analyses of microscopic images taken at various distances of the optical system from the object under investigation. The setup is employed to measure the position of silicon sensors mounted onto a carbon fibre structure with a precision of a few microns.
We describe a setup for optical quality assurance of silicon microstrip sensors. Pattern recognition algorithms were developed to analyze microscopic scans of the sensors for defects. It is shown that the software has a recognition and classification
Results on beam tests of 3D silicon pixel sensors aimed at the ATLAS Insertable-B-Layer and High Luminosity LHC (HL-LHC)) upgrades are presented. Measurements include charge collection, tracking efficiency and charge sharing between pixel cells, as a
Silicon pad sensors with novel functions of higher timing resolution (LGAD: Low Gain Avalanche Detector) and higher position resolution (PSD: Position Sensitive Detector) are studied for an application to Silicon-Tungsten electromagnetic calorimeter
Silicon based micropattern detectors are essential elements of modern high energy physics experiments. Cost effectiveness and high radiation resistance are two important requirements for technologies to be used in inner tracking devices. Processes ba
Several future high-energy physics facilities are currently being planned. The proposed projects include high energy $e^+ e^-$ circular and linear colliders, hadron colliders and muon colliders, while the Electron-Ion Collider (EIC) has already been