ترغب بنشر مسار تعليمي؟ اضغط هنا

Development of novel silicon sensors with high time and spatial resolution

261   0   0.0 ( 0 )
 نشر من قبل Taikan Suehara
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Silicon pad sensors with novel functions of higher timing resolution (LGAD: Low Gain Avalanche Detector) and higher position resolution (PSD: Position Sensitive Detector) are studied for an application to Silicon-Tungsten electromagnetic calorimeter for a detector of the International Linear Collider (ILC). Prototype sensors are fabricated, equipped with dedicated ASICs (Application-Specific Integrated Circuits) and tested with a positron beam as well as a radioisotope. The first results of the measurements of timing resolution with LGADs and position reconstruction with PSDs are reported.



قيم البحث

اقرأ أيضاً

In June 2008 single-sided silicon strip sensors with 50 $mu$m readout pitch were tested in a highly energetic pion beam at the SPS at CERN. The purpose of the test was to evaluate characteristic detector properties by varying the strip width and the number of intermediate strips. The experimental setup and first results for the spatial resolution are discussed.
In view of the LHC upgrade for the High Luminosity Phase (HL-LHC), the ATLAS experiment is planning to replace the Inner Detector with an all-Silicon system. The n-in-p bulk technology represents a valid solution for the modules of most of the layers , given the significant radiation hardness of this option and the reduced cost. The large area necessary to instrument the outer layers will demand to tile the sensors, a solution for which the inefficient region at the border of each sensor needs to be reduced to the minimum size. This paper reports on a joint R&D project by the ATLAS LPNHE Paris group and FBK Trento on a novel n-in-p edgeless planar pixel design, based on the deep-trench process available at FTK.
We describe a setup and procedures for contactless optical 3D-metrology of silicon micro-strip sensors. Space points are obtained by video microscopy and a high precision XY-table. The XY-dimensions are obtained from the movement of the table and pat tern recognition, while the Z-dimension results from a Fast Fourier Transformation analyses of microscopic images taken at various distances of the optical system from the object under investigation. The setup is employed to measure the position of silicon sensors mounted onto a carbon fibre structure with a precision of a few microns.
123 - M. Bomben 2012
In view of the LHC upgrade phases towards HL-LHC, the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and c ost effectiveness, that allow for enlarging the area instrumented with pixel detectors. We report on the development of novel n-in-p edgeless planar pixel sensors fabricated at FBK (Trento, Italy), making use of the active edge concept for the reduction of the dead area at the periphery of the device. After discussing the sensor technology and fabrication process, we present device simulations (pre- and post-irradiation) performed for different sensor configurations. First preliminary results obtained with the test-structures of the production are shown.
CMOS pixel sensors (CPS) represent a novel technological approach to building charged particle detectors. CMOS processes allow to integrate a sensing volume and readout electronics in a single silicon die allowing to build sensors with a small pixel pitch ($sim 20 mu m$) and low material budget ($sim 0.2-0.3% X_0$) per layer. These characteristics make CPS an attractive option for vertexing and tracking systems of high energy physics experiments. Moreover, thanks to the mass production industrial CMOS processes used for the manufacturing of CPS the fabrication construction cost can be significantly reduced in comparison to more standard semiconductor technologies. However, the attainable performance level of the CPS in terms of radiation hardness and readout speed is mostly determined by the fabrication parameters of the CMOS processes available on the market rather than by the CPS intrinsic potential. The permanent evolution of commercial CMOS processes towards smaller feature sizes and high resistivity epitaxial layers leads to the better radiation hardness and allows the implementation of accelerated readout circuits. The TowerJazz $0.18 mu m$ CMOS process being one of the most relevant examples recently became of interest for several future detector projects. The most imminent of these project is an upgrade of the Inner Tracking System (ITS) of the ALICE detector at LHC. It will be followed by the Micro-Vertex Detector (MVD) of the CBM experiment at FAIR. Other experiments like ILD consider CPS as one of the viable options for flavour tagging and tracking sub-systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا