ﻻ يوجد ملخص باللغة العربية
Silicon pad sensors with novel functions of higher timing resolution (LGAD: Low Gain Avalanche Detector) and higher position resolution (PSD: Position Sensitive Detector) are studied for an application to Silicon-Tungsten electromagnetic calorimeter for a detector of the International Linear Collider (ILC). Prototype sensors are fabricated, equipped with dedicated ASICs (Application-Specific Integrated Circuits) and tested with a positron beam as well as a radioisotope. The first results of the measurements of timing resolution with LGADs and position reconstruction with PSDs are reported.
In June 2008 single-sided silicon strip sensors with 50 $mu$m readout pitch were tested in a highly energetic pion beam at the SPS at CERN. The purpose of the test was to evaluate characteristic detector properties by varying the strip width and the
In view of the LHC upgrade for the High Luminosity Phase (HL-LHC), the ATLAS experiment is planning to replace the Inner Detector with an all-Silicon system. The n-in-p bulk technology represents a valid solution for the modules of most of the layers
We describe a setup and procedures for contactless optical 3D-metrology of silicon micro-strip sensors. Space points are obtained by video microscopy and a high precision XY-table. The XY-dimensions are obtained from the movement of the table and pat
In view of the LHC upgrade phases towards HL-LHC, the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and c
CMOS pixel sensors (CPS) represent a novel technological approach to building charged particle detectors. CMOS processes allow to integrate a sensing volume and readout electronics in a single silicon die allowing to build sensors with a small pixel