ﻻ يوجد ملخص باللغة العربية
In this paper we describe QUBIC, an experiment that will observe the polarized microwave sky with a novel approach, which combines the sensitivity of state-of-the art bolometric detectors with the systematic effects control typical of interferometers. QUBIC unique features are the so-called self-calibration, a technique that allows us to clean the measured data from instrumental effects, and its spectral imaging power, i.e. the ability to separate the signal in various sub-bands within each frequency band. QUBIC will observe the sky in two main frequency bands: 150 GHz and 220 GHz. A technological demonstrator is currently under testing and will be deployed in Argentina during 2019, while the final instrument is expected to be installed during 2020.
The Q & U Bolometric Interferometer for Cosmology, QUBIC, is an innovative experiment designed to measure the polarization of the Cosmic Microwave Background and in particular the signature left therein by the inflationary expansion of the Universe.
One of the major challenges of modern cosmology is the detection of B-mode polarization anisotropies in the CMB. These originate from tensor fluctuations of the metric produced during the inflationary phase. Their detection would therefore constitute
In this paper we describe QUBIC, an experiment that takes up the challenge posed by the detection of primordial gravitational waves with a novel approach, that combines the sensitivity of state-of-the art bolometric detectors with the systematic effe
QUBIC (Q & U Bolometric Interferometer for Cosmology) is an international ground-based experiment dedicated in the measurement of the polarized fluctuations of the Cosmic Microwave Background (CMB). It is based on bolometric interferometry, an origin
Bolometric interferometry is a novel technique that has the ability to perform spectral imaging. A bolometric interferometer observes the sky in a wide frequency band and can reconstruct sky maps in several sub-bands within the physical band in post-