ﻻ يوجد ملخص باللغة العربية
This paper deals with the study of the phase transition of the wave functions of a segregated two-component Bose-Einstein condensate under Rabi coupling. This yields a system of two coupled ODEs where the Rabi coupling is linear in the other wave function and acts against segregation. We prove estimates on the asymptotic behaviour of the wave functions, as the strength of the interaction gets strong or weak. We also derive limiting problems in both cases.
Spin-orbit coupled Bose-Einstein condensates (BECs) provide a powerful tool to investigate interesting gauge-field related phenomena. We study the ground state properties of such a system and show that it can be mapped to the well-known Dicke model i
We point out that the widely accepted condition g11g22<g122 for phase separation of a two-component Bose-Einstein condensate is insufficient if kinetic energy is taken into account, which competes against the intercomponent interaction and favors pha
Characterizing quantum phase transitions through quantum correlations has been deeply developed for a long time, while the connections between dynamical phase transitions (DPTs) and quantum entanglement is not yet well understood. In this work, we sh
We propose a quantum simulation of the quantum Rabi model in an atomic quantum dot, which is a single atom in a tight optical trap coupled to the quasiparticle modes of a superfluid Bose-Einstein condensate. This widely tunable setup allows to simula