ﻻ يوجد ملخص باللغة العربية
Characterizing quantum phase transitions through quantum correlations has been deeply developed for a long time, while the connections between dynamical phase transitions (DPTs) and quantum entanglement is not yet well understood. In this work, we show that the time-averaged two-mode entanglement in the spin space reaches a maximal value when it undergoes a DPT induced by external perturbation in a spin-orbit-coupled Bose-Einstein condensate. We employ the von Neumann entropy and a correlation-based entanglement criterion as entanglement measures and find that both of them can infer the existence of DPT. While the von Neumann entropy works only for a pure state at zero temperature and requires state tomography to reconstruct, the experimentally more feasible correlation-based entanglement criterion acts as an excellent proxy for entropic entanglement and can determine the existence of entanglement for a mixed state at finite temperature, making itself an excellent indicator for DPT. Our work provides a deeper understanding about the connection between DPTs and quantum entanglement, and may allow the detection of DPT via entanglement become accessible as the examined criterion is suitable for measuring entanglement.
Spin-orbit coupled Bose-Einstein condensates (BECs) provide a powerful tool to investigate interesting gauge-field related phenomena. We study the ground state properties of such a system and show that it can be mapped to the well-known Dicke model i
Synthetic spin-orbit (SO) coupling, an important ingredient for quantum simulation of many exotic condensed matter physics, has recently attracted considerable attention. The static and dynamic properties of a SO coupled Bose-Einstein condensate (BEC
Entanglement is at the core of quantum information processing and may prove essential for quantum speed-up. Inspired by both theoretical and experimental studies of spin-momentum coupling in systems of ultra-cold atoms, we investigate the entanglemen
We study the spin squeezing in a spin-1/2 Bose-Einstein condensates (BEC) with Raman induced spin-orbit coupling (SOC). Under the condition of two-photon resonance and weak Raman coupling strength, the system possesses two degenerate ground states, u
A negative effective mass can be realized in quantum systems by engineering the dispersion relation. A powerful method is provided by spin-orbit coupling, which is currently at the center of intense research efforts. Here we measure an expanding spin