ﻻ يوجد ملخص باللغة العربية
We consider the one-dimensional Swift-Hohenberg equation coupled to a conservation law. As a parameter increases the system undergoes a Turing bifurcation. We study the dynamics near this bifurcation. First, we show that stationary, periodic solutions bifurcate from a homogeneous ground state. Second, we construct modulating traveling fronts which model an invasion of the unstable ground state by the periodic solutions. This provides a mechanism of pattern formation for the studied system. The existence proof uses center manifold theory for a reduction to a finite-dimensional problem. This is possible despite the presence of infinitely many imaginary eigenvalues for vanishing bifurcation parameter since the eigenvalues leave the imaginary axis with different velocities if the parameter increases. Furthermore, compared to non-conservative systems, we address new difficulties arising from an additional neutral mode at Fourier wave number $k=0$ by exploiting that the amplitude of the conserved variable is small compared to the other variables.
A theoretical model for studying pattern formation in electroconvection is proposed in the form of a modified Swift-Hohenberg equation. A localized state is found in two dimension, in agreement with the experimentally observed ``worm state. The corre
We consider the thin-film equation $partial_t h + partial_y left(m(h) partial_y^3 hright) = 0$ in ${h > 0}$ with partial-wetting boundary conditions and inhomogeneous mobility of the form $m(h) = h^3+lambda^{3-n}h^n$, where $h ge 0$ is the film heigh
We show that all meromorphic solutions of the stationary reduction of the real cubic Swift-Hohenberg equation are elliptic or degenerate elliptic. We then obtain them all explicitly by the subequation method, and one of them appears to be a new elliptic solution.
We study traveling wave solutions of the nonlinear variational wave equation. In particular, we show how to obtain global, bounded, weak traveling wave solutions from local, classical ones. The resulting waves consist of monotone and constant segment
Generalizing the L-Kuramoto-Sivashinsky (L-KS) kernel from our earlier work, we give a novel explicit-kernel formulation useful for a large class of fourth order deterministic, stochastic, linear, and nonlinear PDEs in multispatial dimensions. These