ﻻ يوجد ملخص باللغة العربية
We consider the thin-film equation $partial_t h + partial_y left(m(h) partial_y^3 hright) = 0$ in ${h > 0}$ with partial-wetting boundary conditions and inhomogeneous mobility of the form $m(h) = h^3+lambda^{3-n}h^n$, where $h ge 0$ is the film height, $lambda > 0$ is the slip length, $y > 0$ denotes the lateral variable, and $n in (0,3)$ is the mobility exponent parameterizing the nonlinear slip condition. The partial-wetting regime implies the boundary condition $partial_y h = mathrm{const.} > 0$ at the triple junction $partial{h > 0}$ (nonzero microscopic contact angle). Existence and uniqueness of traveling-wave solutions to this problem under the constraint $partial_y^2 h to 0$ as $h to infty$ have been proved in previous work by Chiricotto and Giacomelli in [Commun. Appl. Ind. Math., 2(2):e-388, 16, 2011]. We are interested in the asymptotics as $h downarrow 0$ and $h to infty$. By reformulating the problem as $h downarrow 0$ as a dynamical system for the error between the solution and the microscopic contact angle, values for $n$ are found for which linear as well as nonlinear resonances occur. These resonances lead to a different asymptotic behavior of the solution as $hdownarrow0$ depending on $n$. Together with the asymptotics as $htoinfty$ characterizing Tanners law for the velocity-dependent macroscopic contact angle as found by Giacomelli, the first author of this work, and Otto in [Nonlinearity, 29(9):2497-2536, 2016], the rigorous asymptotics of the traveling-wave solution to the thin-film equation in partial wetting can be characterized. Furthermore, our approach enables us to analyze the relation between the microscopic and macroscopic contact angle. It is found that Tanners law for the macroscopic contact angle depends continuously differentiably on the microscopic contact angle.
In this paper we study the existence of finite energy traveling waves for the Gross-Pitaevskii equation. This problem has deserved a lot of attention in the literature, but the existence of solutions in the whole subsonic range was a standing open pr
We study traveling wave solutions of the nonlinear variational wave equation. In particular, we show how to obtain global, bounded, weak traveling wave solutions from local, classical ones. The resulting waves consist of monotone and constant segment
We consider the 3D Gross-Pitaevskii equation begin{equation} onumber ipartial_t psi +Delta psi+(1-|psi|^2)psi=0 text{ for } psi:mathbb{R}times mathbb{R}^3 rightarrow mathbb{C} end{equation} and construct traveling waves solutions to this equation. Th
We investigate the large time behavior of compactly supported solutions for a one-dimensional thin-film equation with linear mobility in the regime of partial wetting. We show the stability of steady state solutions. The proof uses the Lagrangian coo
In this paper we prove that a class of non self-adjoint second order differential operators acting in cylinders $Omegatimesmathbb Rsubseteqmathbb R^{d+1}$ have only real discrete spectrum located to the right of the right most point of the essential