ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark matter inner slope and concentration in galaxies: from the Fornax dwarf to M87

78   0   0.0 ( 0 )
 نشر من قبل Gary Mamon
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We apply two new state-of-the-art methods that model the distribution of observed tracers in projected phase space to lift the mass / velocity anisotropy (VA) degeneracy and deduce constraints on the mass profiles of galaxies, as well as their VA. We first show how a distribution function based method applied to the satellite kinematics of otherwise isolated SDSS galaxies shows convincing observational evidence of age matching: red galaxies have more concentrated dark matter (DM) halos than blue galaxies of the same stellar or halo mass. Then, applying the MAMPOSSt technique to M87 (traced by its red and blue globular clusters) we find that very cuspy DM is favored, unless we release priors on DM concentration or stellar mass (leading to unconstrained slope). For the Fornax dwarf spheroidal (traced by its metal-rich and metal-poor stars), the inner DM slope is unconstrained, with weak evidence for a core if the stellar mass is fixed. This highlights how priors are crucial for DM modeling. Finally, we find that blue GCs around M87 and metal-rich stars in Fornax have tangential outer VA.

قيم البحث

اقرأ أيضاً

We use cosmological hydrodynamical simulations of the APOSTLE project along with high-quality rotation curve observations to examine the fraction of baryons in {Lambda}CDM haloes that collect into galaxies. This galaxy formation efficiency correlates strongly and with little scatter with halo mass, dropping steadily towards dwarf galaxies. The baryonic mass of a galaxy may thus be used to place a lower limit on total halo mass and, consequently, on its asymptotic maximum circular velocity. A number of observed dwarfs seem to violate this constraint, having baryonic masses up to ten times higher than expected from their rotation speeds, or, alternatively, rotating at only half the speed expected for their mass. Taking the data at face value, either these systems have formed galaxies with extraordinary efficiency - highly unlikely given their shallow potential wells - or their dark matter content is much lower than expected from {Lambda}CDM haloes. This missing dark matter is reminiscent of the inner mass deficit of galaxies with slowly-rising rotation curves, but cannot be explained away by star formation-induced cores in the dark mass profile, since the anomalous deficit applies to regions larger than the luminous galaxies themselves. We argue that explaining the structure of these galaxies would require either substantial modification of the standard Lambda cold dark matter paradigm or else significant revision to the uncertainties in their inferred mass profiles, which should be much larger than reported. Systematic errors in inclination may provide a simple resolution to what would otherwise be a rather intractable problem for the current paradigm.
We use thirty-eight high-resolution simulations of galaxy formation between redshift 10 and 5 to study the impact of a 3 keV warm dark matter (WDM) candidate on the high-redshift Universe. We focus our attention on the stellar mass function and the g lobal star formation rate and consider the consequences for reionization, namely the neutral hydrogen fraction evolution and the electron scattering optical depth. We find that three different effects contribute to differentiate warm and cold dark matter (CDM) predictions: WDM suppresses the number of haloes with mass less than few $10^9$ M$_{odot}$; at a fixed halo mass, WDM produces fewer stars than CDM; and finally at halo masses below $10^9$ M$_{odot}$, WDM has a larger fraction of dark haloes than CDM post-reionization. These three effects combine to produce a lower stellar mass function in WDM for galaxies with stellar masses at and below $sim 10^7$ M$_{odot}$. For $z > 7$, the global star formation density is lower by a factor of two in the WDM scenario, and for a fixed escape fraction, the fraction of neutral hydrogen is higher by 0.3 at $z sim 6$. This latter quantity can be partially reconciled with CDM and observations only by increasing the escape fraction from 23 per cent to 34 per cent. Overall, our study shows that galaxy formation simulations at high redshift are a key tool to differentiate between dark matter candidates given a model for baryonic physics.
166 - Timothy D. Brandt 2016
I show that a recently discovered star cluster near the center of the ultra-faint dwarf galaxy Eridanus II provides strong constraints on massive compact halo objects (MACHOs) of >~5 M_sun as the main component of dark matter. MACHO dark matter will dynamically heat the cluster, driving it to larger sizes and higher velocity dispersions until it dissolves into its host galaxy. The stars in compact ultra-faint dwarf galaxies themselves will be subject to the same dynamical heating; the survival of at least ten such galaxies places independent limits on MACHO dark matter of masses >~10 M_sun. Both Eri IIs cluster and the compact ultra-faint dwarfs are characterized by stellar masses of just a few thousand M_sun and half-light radii of 13 pc (for the cluster) and ~30 pc (for the ultra-faint dwarfs). These systems close the ~20--100 M_sun window of allowed MACHO dark matter and combine with existing constraints from microlensing, wide binaries, and disk kinematics to rule out dark matter composed entirely of MACHOs from ~10$^{-7}$ M_sun up to arbitrarily high masses.
Dark Matter (DM) is an ingredient essential to the current cosmological concordance model. It provides the gravitational pull needed for the baryons to form galaxies. Therefore, the existence of galaxies without DM is both disquieting and extremely i nteresting. Guo et al. recently presented further evidence for a population of DM-deficient dwarf galaxies, however, their analysis bypasses the triaxiality of the dwarf galaxies. We carry out a Monte Carlo simulation showing how triaxiality must be considered to measure dynamical masses from projected axial ratios, calling into question the evidence for a population of DM-deficient dwarf galaxies. Such a population may consist of normal almost face-on HI disks with their inclination overestimated.
We present a suite of FIRE-2 cosmological zoom-in simulations of isolated field dwarf galaxies, all with masses of $M_mathrm{halo} approx 10^{10},$M$_odot$ at $z=0$, across a range of dark matter models. For the first time, we compare how both self-i nteracting dark matter (SIDM) and/or warm dark matter (WDM) models affect the assembly histories as well as the central density structure in fully hydrodynamical simulations of dwarfs. Dwarfs with smaller stellar half-mass radii (r$_{1/2}<500$ pc) have lower $sigma_star/V_mathrm{max}$ ratios, reinforcing the idea that smaller dwarfs may reside in halos that are more massive than is naively expected. The majority of dwarfs simulated with self-interactions actually experience contraction of their inner density profiles with the addition of baryons relative to the cores produced in dark-matter-only runs, though the simulated dwarfs are always less centrally dense than in $Lambda$CDM. The V$_{1/2}-$r$_{1/2}$ relation across all simulations is generally consistent with observations of Local Field dwarfs, though compact objects such as Tucana provide a unique challenge. Spatially-resolved rotation curves in the central regions ($<400$ pc) of small dwarfs could provide a way to distinguish between CDM, WDM, and SIDM, however: at the masses probed in this simulation suite, cored density profiles in dwarfs with small r$_{1/2}$ values can only originate from dark matter self-interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا