ﻻ يوجد ملخص باللغة العربية
Modern cryptography is largely based on complexity assumptions, for example, the ubiquitous RSA is based on the supposed complexity of the prime factorization problem. Thus, it is of fundamental importance to understand how a quantum computer would eventually weaken these algorithms. In this paper, one follows Feynmans prescription for a computer to simulate the physics corresponding to the algorithm of factoring a large number $N$ into primes. Using Dirac-Jordan transformation theory one translates factorization into the language of quantum hermitical operators, acting on the vectors of the Hilbert space. This leads to obtaining the ensemble of factorization of $N$ in terms of the Euler function $varphi(N)$, that is quantized. On the other hand, considering $N$ as a parameter of the computer, a Quantum Mechanical Prime Counting Function $pi_{QM}(x)$, where $x$ factorizes $N$, is derived. This function converges to $pi(x)$ when $Ngg x$. It has no counterpart in analytic number theory and its derivation relies on semiclassical quantization alone.
We present efficient quantum algorithms for simulating time-dependent Hamiltonian evolution of general input states using an oracular model of a quantum computer. Our algorithms use either constant or adaptively chosen time steps and are significant
We develop a workflow to use current quantum computing hardware for solving quantum many-body problems, using the example of the fermionic Hubbard model. Concretely, we study a four-site Hubbard ring that exhibits a transition from a product state to
Limited quantum memory is one of the most important constraints for near-term quantum devices. Understanding whether a small quantum computer can simulate a larger quantum system, or execute an algorithm requiring more qubits than available, is both
Forthcoming exascale digital computers will further advance our knowledge of quantum chromodynamics, but formidable challenges will remain. In particular, Euclidean Monte Carlo methods are not well suited for studying real-time evolution in hadronic
Gauge theories are the most successful theories for describing nature at its fundamental level, but obtaining analytical or numerical solutions often remains a challenge. We propose an experimental quantum simulation scheme to study ground state prop