ﻻ يوجد ملخص باللغة العربية
A cyclic permutation $pi:{1, dots, N}to {1, dots, N}$ has a emph{block structure} if there is a partition of ${1, dots, N}$ into $k otin{1,N}$ segments (emph{blocks}) permuted by $pi$; call $k$ the emph{period} of this block structure. Let $p_1<dots <p_s$ be periods of all possible block structures on $pi$. Call the finite string $(p_1/1,$ $p_2/p_1,$ $dots,$ $p_s/p_{s-1}, N/p_s)$ the {it renormalization tower of $pi$}. The same terminology can be used for emph{patterns}, i.e., for families of cycles of interval maps inducing the same (up to a flip) cyclic permutation. A renormalization tower $mathcal M$ emph{forces} a renormalization tower $mathcal N$ if every continuous interval map with a cycle of pattern with renormalization tower $mathcal M$ must have a cycle of pattern with renormalization tower $mathcal N$. We completely characterize the forcing relation among renormalization towers. Take the following order among natural numbers: $ 4gg 6gg 3gg dots gg 4ngg 4n+2gg 2n+1ggdots gg 2gg 1 $ understood in the strict sense. We show that the forcing relation among renormalization towers is given by the lexicographic extension of this order. Moreover, for any tail $T$ of this order there exists an interval map for which the set of renormalization towers of its cycles equals $T$.
We present a comprehensive mechanism for the emergence of rotational horseshoes and strange attractors in a class of two-parameter families of periodically-perturbed differential equations defining a flow on a three-dimensional manifold. When both pa
Define the following order among all natural numbers except for 2 and 1: [ 4gg 6gg 3gg dots gg 4ngg 4n+2gg 2n+1gg 4n+4ggdots ] Let $f$ be a continuous interval map. We show that if $mgg s$ and $f$ has a cycle with no division (no block structure) of
There are few examples of non-autonomous vector fields exhibiting complex dynamics that may be proven analytically. We analyse a family of periodic perturbations of a weakly attracting robust heteroclinic network defined on the two-sphere. We derive
In this paper, we show that the dynamics of a wide variety of nonlinear systems such as engineering, physical, chemical, biological, and ecological systems, can be simulated or modeled by the dynamics of memristor circuits. It has the advantage that
In this note, we extend the renormalization horseshoe we have recently constructed with N. Goncharuk for analytic diffeomorphisms of the circle to their small two-dimensional perturbations. As one consequence, Herman rings with rotation numbers of bo