ﻻ يوجد ملخص باللغة العربية
There are few examples of non-autonomous vector fields exhibiting complex dynamics that may be proven analytically. We analyse a family of periodic perturbations of a weakly attracting robust heteroclinic network defined on the two-sphere. We derive the first return map near the heteroclinic cycle for small amplitude of the perturbing term, and we reduce the analysis of the non-autonomous system to that of a two-dimensional map on a cylinder. Interesting dynamical features arise from a discrete-time Bogdanov-Takens bifurcation. When the perturbation strength is small the first return map has an attracting invariant closed curve that is not contractible on the cylinder. Near the centre of frequency locking there are parameter values with bistability: the invariant curve coexists with an attracting fixed point. Increasing the perturbation strength there are periodic solutions that bifurcate into a closed contractible invariant curve and into a region where the dynamics is conjugate to a full shift on two symbols.
We present a comprehensive mechanism for the emergence of rotational horseshoes and strange attractors in a class of two-parameter families of periodically-perturbed differential equations defining a flow on a three-dimensional manifold. When both pa
This article studies routes to chaos occurring within a resonance wedge for a 3-parametric family of differential equations acting on a 3-sphere. Our starting point is an autonomous vector field whose flow exhibits a weakly attracting heteroclinic ne
We study the dynamics of the periodically-forced May-Leonard system. We extend previous results on the field and we identify different dynamical regimes depending on the strength of attraction $delta$ of the network and the frequency $omega$ of the p
We prove that any diffeomorphism of a compact manifold can be C^1-approximated by a diffeomorphism which exhibits a homoclinic bifurcation (a homoclinic tangency or a heterodimensional cycle) or by a diffeomorphism which is partially hyperbolic (its
We study the dynamics arising when two identical oscillators are coupled near a Hopf bifurcation where we assume a parameter $epsilon$ uncouples the system at $epsilon=0$. Using a normal form for $N=2$ identical systems undergoing Hopf bifurcation, w