ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct observation of anapoles by neutron diffraction

243   0   0.0 ( 0 )
 نشر من قبل Gerrit van der Laan
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The scope of magnetic neutron scattering has been expanded by the observation of electronic Dirac dipoles (anapoles) that are polar (parity-odd) and magnetic (time-odd). A zero-magnetization ferromagnet Sm0.976Gd0.024Al2 with a diamond-type structure presents Dirac multipoles at basis-forbidden reflections that include the standard (2, 2, 2) reflection. Magnetic amplitudes measured at four such reflections are in full accord with a structure factor calculated from the appropriate magnetic space group.

قيم البحث

اقرأ أيضاً

We use a spatially resolved, direct spectroscopic probe for electronic structure with an additional sensitivity to chemical compositions to investigate high-quality single crystal samples of La_{1/4}Pr_{3/8}Ca_{3/8}MnO_{3}, establishing the formation of distinct insulating domains embedded in the metallic host at low temperatures. These domains are found to be at least an order of magnitude larger in size compared to previous estimates and exhibit memory effects on temperature cycling in the absence of any perceptible chemical inhomogeneity, suggesting long-range strains as the probable origin.
138 - T. Chatterji , M. Meven , 2016
We have investigated the temperature evolution of the magnetic structures of HoFeO$_3$ by single crystal neutron diffraction. The three different magnetic structures found as a function of temperature for hfo are described by the magnetic groups Pb$$ n$2_1$, Pbn$2_1$ and Pbn$2_1$ and are stable in the temperature ranges $approx$ 600-55~K, 55-37~K and 35$>T>2$~K respectively. In all three the fundamental coupling between the Fe sub-lattices remains the same and only their orientation and the degree of canting away from the ideal axial direction varies. The magnetic polarisation of the Ho sub-lattices in these two higher temperature regions, in which the major components of the Fe moment lie along $x$ and $y$, is very small. The canting of the moments from the axial directions is attributed to the antisymmetric interactions allowed by the crystal symmetry. They include contributions from single ion anisotropy as well as the Dzyaloshinski antisymmetric exchange. In the low temperature phase two further structural transitions are apparent in which the spontaneous magnetisation changes sign with respect to the underlying antiferromagnetic configuration. In this temperature range the antisymmetric exchange energy varies rapidly as the the Ho sub-lattices begin to order. So long as the ordered Ho moments are small the antisymmetric exchange is due only to Fe-Fe interactions, but as the degree of Ho order increases the Fe-Ho interactions take over whilst at the lowest temperatures, when the Ho moments approach saturation the Ho-Ho interactions dominate. The reversals of the spontaneous magnetisation found in this study suggest that in hfo the sums of the Fe-Fe and Ho-Ho antisymmetric interactions have the same sign as one another, but that of the Ho-Fe terms is opposite.
The magnetic properties of RMn2O5 multiferrroics as obtained by unpolarized and polarized neutron diffraction experiments are reviewed. We discuss the qualitative features of the magnetic phase diagram both in zero magnetic field and in field and ana lyze the commensurate magnetic structure and its coupling to an applied electric field. The origin of ferrolectricity is discussed based on calculations of the ferroelectric polarization predicted by different microscopic coupling mechanisms (exchange striction and cycloidal spin-orbit models). A minimal model containing a small set of parameters is also presented in order to understand the propagation of the magnetic structure along the c-direction.
Quantum systems in confined geometries are host to novel physical phenomena. Examples include quantum Hall systems in semiconductors and Dirac electrons in graphene. Interest in such systems has also been intensified by the recent discovery of a larg e enhancement in photoluminescence quantum efficiency and a potential route to valleytronics in atomically thin layers of transition metal dichalcogenides, MX2 (M = Mo, W; X = S, Se, Te), which are closely related to the indirect to direct bandgap transition in monolayers. Here, we report the first direct observation of the transition from indirect to direct bandgap in monolayer samples by using angle resolved photoemission spectroscopy on high-quality thin films of MoSe2 with variable thickness, grown by molecular beam epitaxy. The band structure measured experimentally indicates a stronger tendency of monolayer MoSe2 towards a direct bandgap, as well as a larger gap size, than theoretically predicted. Moreover, our finding of a significant spin-splitting of 180 meV at the valence band maximum of a monolayer MoSe2 film could expand its possible application to spintronic devices.
Field-dependent magnetic structure of a layered Dirac material EuMnBi$_2$ was investigated in detail by the single crystal neutron diffraction and the resonant x-ray magnetic diffraction techniques. On the basis of the reflection conditions in the an tiferromagnetic phase at zero field, the Eu moments were found to be ordered ferromagnetically within the $ab$ plane and stacked antiferromagnetically along the $c$ axis in the sequence of up-up-down-down. Upon the spin-flop transition under the magnetic field parallel to the $c$ axis, the Eu moments are reoriented from the $c$ to the $a$ or $b$ directions forming two kinds of spin-flop domains, whereas the antiferromagnetic structure of the Mn sublattice remains intact as revealed by the quantitative analysis of the change in the neutron diffraction intensities. The present study provides a concrete basis to discuss the dominant role of the Eu sublattice on the enhanced two-dimensionality of the Dirac fermion transport in EuMnBi$_2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا