ﻻ يوجد ملخص باللغة العربية
The largest structures in the cosmic web probe the dynamical nature of dark energy through their integrated Sachs-Wolfe imprints. In the strength of the signal, typical cosmic voids have shown good consistency with expectation $A_{rm ISW}=Delta T^{rm data} / Delta T^{rm theory}=1$, given the substantial cosmic variance. Discordantly, large-scale hills in the gravitational potential, or supervoids, have shown excess signals. In this study, we mapped out 87 new supervoids in the total 5000 deg$^2$ footprint of the Dark Energy Survey at $0.2<z<0.9$ to probe these anomalous claims. We found an excess imprinted profile with $ A_{rm ISW}approx4.1pm2.0$ amplitude. The combination with independent BOSS data reveals an ISW imprint of supervoids at the $3.3sigma$ significance level with an enhanced $A_{rm ISW}approx5.2pm1.6$ amplitude. The tension with $Lambda$CDM predictions is equivalent to $2.6sigma$ and remains unexplained.
Cosmic structures leave an imprint on the microwave background radiation through the integrated Sachs-Wolfe effect. We construct a template map of the linear signal using the SDSS-III Baryon Acoustic Oscillation Survey at redshift 0.43 < z < 0.65. We
We show that linear redshift distortions in the galaxy distribution can affect the ISW galaxy-temperature signal, when the galaxy selection function is derived from a redshift survey. We find this effect adds power to the ISW signal at all redshifts
The gravitational-wave event GW170817, together with the electromagnetic counterpart, shows that the speed of tensor perturbations $c_T$ on the cosmological background is very close to that of light $c$ for the redshift $z<0.009$. In generalized Proc
I present to this conference our latest measurements of the integrated Sachs-Wolfe (ISW) effect. After a brief review of the reasons for which this effect arises and of the technique to detect it by cross-correlating the cosmic microwave background (
We construct a map of the time derivative of the gravitational potential traced by SDSS Luminous Red Galaxies. The potential decays on large scales due to cosmic acceleration, leaving an imprint on cosmic microwave background (CMB) radiation through