ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron-phonon coupling in single-layer MoS2

211   0   0.0 ( 0 )
 نشر من قبل Sanjoy Kr. Mahatha
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electron-phonon coupling strength in the spin-split valence band maximum of single-layer MoS$_2$ is studied using angle-resolved photoemission spectroscopy and density functional theory-based calculations. Values of the electron-phonon coupling parameter $lambda$ are obtained by measuring the linewidth of the spin-split bands as a function of temperature and fitting the data points using a Debye model. The experimental values of $lambda$ for the upper and lower spin-split bands at K are found to be 0.05 and 0.32, respectively, in excellent agreement with the calculated values for a free-standing single-layer MoS$_2$. The results are discussed in the context of spin and phase-space restricted scattering channels, as reported earlier for single-layer WS$_2$ on Au(111). The fact that the absolute valence band maximum in single-layer MoS$_2$ at K is almost degenerate with the local valence band maximum at $Gamma$ can potentially be used to tune the strength of the electron-phonon interaction in this material.

قيم البحث

اقرأ أيضاً

Recent theory has demonstrated that the value of the electron-phonon coupling strength $lambda$ can be extracted directly from the thermal attenuation (Debye-Waller factor) of Helium atom scattering reflectivity. This theory is here extended to multi valley semimetal systems and applied to the case of graphene on different metal substrates and graphite. It is shown that $lambda$ rapidly increases for decreasing graphene-substrate binding strength. Two different calculational models are considered which produce qualitatively similar results for the dependence of $lambda$ on binding strength. These models predict, respectively, values of $lambda_{HAS} = 0.89$ and 0.32 for a hypothetical flat free-standing single-layer graphene with cyclic boundary conditions. The method is suitable for analysis and characterization of not only the graphene overlayers considered here, but also other layered systems such as twisted graphene bilayers.
117 - Xiaokun Gu , Zheyong Fan , Hua Bao 2019
Understanding the mechanisms of thermal conduction in graphene is a long-lasting research topic, due to its high thermal conductivity. Peierls-Boltzmann transport equation (PBTE) based studies have revealed many unique phonon transport properties in graphene, but most previous works only considered three-phonon scatterings and relied on interatomic force constants (IFCs) extracted at 0 K. In this paper, we explore the roles of four-phonon scatterings and the temperature dependent IFCs on phonon transport in graphene through our PBTE calculations. We demonstrate that the strength of four-phonon scatterings would be severely overestimated by using the IFCs extracted at 0 K compared with those corresponding to a finite temperature, and four-phonon scatterings are found to significantly reduce the thermal conductivity of graphene even at room temperature. In order to reproduce the prediction from molecular dynamics simulations, phonon frequency broadening has to be taken into account when determining the phonon scattering rates. Our study elucidates the phonon transport properties of graphene at finite temperatures, and could be extended to other crystalline materials.
We present a photoluminescence study of freestanding and Si/SiO2 supported single- and few-layer MoS2. The single-layer exciton peak (A) is only observed in freestanding MoS2. The photoluminescence of supported single-layer MoS2 is instead originatin g from the A- (trion) peak as the MoS2 is n-type doped from the substrate. In bilayer MoS2, the van der Waals interaction with the substrate is decreasing the indirect band gap energy by up to ~ 80 meV. Furthermore, the photoluminescence spectra of suspended MoS2 can be influenced by interference effects.
We show that hole states in recently discovered single-layer InSe are strongly renormalized by the coupling with acoustic phonons. The coupling is enhanced significantly at moderate hole doping ($sim$10$^{13}$ cm$^{-2}$) due to hexagonal warping of t he Fermi surface. While the system remains dynamically stable, its electron-phonon spectral function exhibits sharp low-energy resonances, leading to the formation of satellite quasiparticle states near the Fermi energy. Such many-body renormalization is predicted to have two important consequences. First, it significantly suppresses charge carrier mobility reaching $sim$1 cm$^2$V$^{-1}$s$^{-1}$ at $100$ K in a freestanding sample. Second, it gives rise to unusual temperature-dependent optical excitations in the midinfrared region. Relatively small charge carrier concentrations and realistic temperatures suggest that these excitations may be observed experimentally.
Molybdenum disulfide (MoS2) of single and few-layer thickness was exfoliated on SiO2/Si substrate and characterized by Raman spectroscopy. The number of S-Mo-S layers of the samples was independently determined by contact-mode atomic-force microscopy . Two Raman modes, E12g and A1g, exhibited sensitive thickness dependence, with the frequency of the former decreasing and that of the latter increasing with thickness. The results provide a convenient and reliable means for determining layer thickness with atomic-level precision. The opposite direction of the frequency shifts, which cannot be explained solely by van der Waals interlayer coupling, is attributed to Coulombic interactions and possible stacking-induced changes of the intralayer bonding. This work exemplifies the evolution of structural parameters in layered materials in changing from the 3-dimensional to the 2-dimensional regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا