ﻻ يوجد ملخص باللغة العربية
Understanding the mechanisms of thermal conduction in graphene is a long-lasting research topic, due to its high thermal conductivity. Peierls-Boltzmann transport equation (PBTE) based studies have revealed many unique phonon transport properties in graphene, but most previous works only considered three-phonon scatterings and relied on interatomic force constants (IFCs) extracted at 0 K. In this paper, we explore the roles of four-phonon scatterings and the temperature dependent IFCs on phonon transport in graphene through our PBTE calculations. We demonstrate that the strength of four-phonon scatterings would be severely overestimated by using the IFCs extracted at 0 K compared with those corresponding to a finite temperature, and four-phonon scatterings are found to significantly reduce the thermal conductivity of graphene even at room temperature. In order to reproduce the prediction from molecular dynamics simulations, phonon frequency broadening has to be taken into account when determining the phonon scattering rates. Our study elucidates the phonon transport properties of graphene at finite temperatures, and could be extended to other crystalline materials.
We report the first temperature dependent phonon transport measurements in suspended Cu-CVD single layer graphene (SLG) from 15K to 380K using microfabricated suspended devices. The thermal conductance per unit cross section $sigma$/A increases with
The electron-phonon coupling strength in the spin-split valence band maximum of single-layer MoS$_2$ is studied using angle-resolved photoemission spectroscopy and density functional theory-based calculations. Values of the electron-phonon coupling p
Phonon self-energy corrections have mostly been studied theoretically and experimentally for phonon modes with zone-center (q = 0) wave-vectors. Here, gate-modulated Raman scattering is used to study phonons of a single layer of graphene (1LG) in the
Recent theory has demonstrated that the value of the electron-phonon coupling strength $lambda$ can be extracted directly from the thermal attenuation (Debye-Waller factor) of Helium atom scattering reflectivity. This theory is here extended to multi
Motivated by recent experimental observations of Tongay et al. [Tongay et al., Nano Letters, 12(11), 5576 (2012)] we show how the electronic properties and Raman characteristics of single layer MoSe2 are affected by elastic biaxial strain. We found t