ﻻ يوجد ملخص باللغة العربية
In this short note, we provide a calculation of the Euler characteristic of a finite homotopy colimit of finite cell complexes, which depends only on the Euler characteristics of each space and resembles Mobius inversion. Versions of the result are known when the colimit is indexed by a finite category, but the behavior is more uniform when we index by finite quasicategories instead. The formula simultaneously generalizes the additive formula for Euler characteristic of a homotopy pushout and the multiplicative formula for Euler characteristic of a fiber bundle.
We discuss an approach to the emph{covering} and emph{vanishing} theorems for the comparison map from bounded cohomology to singular cohomology, based on the observation that the comparison map is the coassembly map for bounded cohomology.
We resolve two long-standing and closely related problems concerning stably free $mathbb{Z} G$-modules and the homotopy type of finite 2-complexes. In particular, for all $k ge 1$, we show that there exists a group $G$ and a non-free stably free $mat
Baez asks whether the Euler characteristic (defined for spaces with finite homology) can be reconciled with the homotopy cardinality (defined for spaces with finite homotopy). We consider the smallest infinity category $text{Top}^text{rx}$ containing
We develop foundations for the category theory of $infty$-categories parametrized by a base $infty$-category. Our main contribution is a theory of indexed homotopy limits and colimits, which specializes to a theory of $G$-colimits for $G$ a finite gr
The index theory for the space of finite propagation unitary operators was developed by Gross, Nesme, Vogts and Werner from the viewpoint of quantum walks in mathematical physics. In particular, they proved that $pi_0$ of the space is determined by t