ﻻ يوجد ملخص باللغة العربية
Baez asks whether the Euler characteristic (defined for spaces with finite homology) can be reconciled with the homotopy cardinality (defined for spaces with finite homotopy). We consider the smallest infinity category $text{Top}^text{rx}$ containing both these classes of spaces and closed under homotopy pushout squares. In our main result, we compute the K-theory $K_0(text{Top}^text{rx})$, which is freely generated by equivalence classes of connected p-finite spaces, as p ranges over all primes. This provides a negative answer to Baezs question globally, but a positive answer when we restrict attention to a prime.
We resolve two long-standing and closely related problems concerning stably free $mathbb{Z} G$-modules and the homotopy type of finite 2-complexes. In particular, for all $k ge 1$, we show that there exists a group $G$ and a non-free stably free $mat
We give a method for computing the C_2-equivariant homotopy groups of the Betti realization of a p-complete cellular motivic spectrum over R in terms of its motivic homotopy groups. More generally, we show that Betti realization presents the C_2-equi
Let F be a field of characteristic different than 2. We establish surjectivity of Balmers comparison map rho^* from the tensor triangular spectrum of the homotopy category of compact motivic spectra to the homogeneous Zariski spectrum of Milnor-Witt
In this short note, we provide a calculation of the Euler characteristic of a finite homotopy colimit of finite cell complexes, which depends only on the Euler characteristics of each space and resembles Mobius inversion. Versions of the result are k
We give a new description of Rosenthals generalized homotopy fixed point spaces as homotopy limits over the orbit category. This is achieved using a simple categorical model for classifying spaces with respect to families of subgroups.