ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparative Analysis of the Main Nasal Cavity and the Paranasal Sinuses in Chronic Rhinosinusitis: An Anatomic Study of Maximal Medical Therapy

59   0   0.0 ( 0 )
 نشر من قبل Saikat Basu
 تاريخ النشر 2018
  مجال البحث فيزياء علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Objective: Minimal literature exists investigating changes in inflammation with respect to the main nasal cavity (MNC) and paranasal sinuses (PS) before and after maximal medical therapy (MMT) for chronic rhinosinusitis (CRS). We hypothesized that MMT produces a differential level of change in the volume of air space in the MNC and PS, and that resolution of mucosal disease associated with the osteomeatal complex (OMC) influences clinical response to MMT. Study Design: Retrospective study of 12 pre- and post-MMT sinus-CT scans from 6 subjects with CRS, of which three succeeded and three failed therapy. Methods: Mimics was used to create 3D-models of the MNC and PS, and then analysis of the models was performed. Results: Mean differences in the sinonasal volume were 7866.5+/-4339.9 mm3 and 17869.10+/-19472.70 mm3, amongst the failures and successes, respectively. There is wide variability in the contribution of PS and MNC airspace volume change to the overall change in the sinonasal volume. In two subjects, the direction of volume change in the MNC and PS diverged with respect to the overall change in volume. Line-of-sight analysis demonstrated that successful responders to MMT had more patent MNC with direct access to the OMC. Conclusions: There is a differential contribution to sinonasal, airspace volume change after MMT, when comparing the MNC and PS. Response to MMT may not be solely attributable to PS change and may include a function of MNC change. Line-of-sight models suggest that direct access to the OMC may impact response to MMT.



قيم البحث

اقرأ أيضاً

Introduction: Topical intranasal drugs are widely prescribed for Chronic Rhinosinusitis (CRS), although delivery can vary with device type and droplet size. The study objective was to compare nebulized and sprayed droplet deposition in the paranasal sinuses and ostiomeatal complex (OMC) across multiple droplet sizes in CRS patients using computational fluid dynamics (CFD). Methods: Three-dimensional models of sinonasal cavities were constructed from computed tomography (CT) scans of three subjects with CRS refractory to medical therapy using imaging software. Assuming steady-state inspiratory airflow at resting rate, CFD was used to simulate 1-120 {mu}m sprayed droplet deposition in the left and right sinuses and OMC with spray nozzle positioning as in current nasal spray use instructions. Zero-velocity nebulization simulations were performed for 1-30 {mu}m droplet sizes, maximal sinus and OMC deposition fractions (MSDF) were obtained, and sizes that achieved at least 50% of MSDF were identified. Nebulized MSDF was compared to sprayed droplet deposition. We also validated CFD framework through in vitro experiments. Results: Among nebulized droplet sizes, 11-14 {mu}m droplets achieved at least 50% of MSDF in all six sinonasal cavities. Five of six sinonasal cavities had greater sinus and OMC deposition with nebulized droplets than with sprayed droplets at optimal sizes. Conclusions: Nebulized droplets may target the sinuses and OMC more effectively than sprayed particles at sizes achieving best deposition. Further studies are needed to confirm our preliminary findings. Several commercial nasal nebulizers have average particle sizes outside the optimal nebulized droplet size range found here, suggesting potential for product enhancement.
Background: Investigation of the functioning of the brain in living systems has been a major effort amongst scientists and medical practitioners. Amongst the various disorder of the brain, epilepsy has drawn the most attention because this disorder c an affect the quality of life of a person. In this paper we have reinvestigated the EEGs for normal and epileptic patients using surrogate analysis, probability distribution function and Hurst exponent. Results: Using random shuffled surrogate analysis, we have obtained some of the nonlinear features that was obtained by Andrzejak textit{et al.} [Phys Rev E 2001, 64:061907], for the epileptic patients during seizure. Probability distribution function shows that the activity of an epileptic brain is nongaussian in nature. Hurst exponent has been shown to be useful to characterize a normal and an epileptic brain and it shows that the epileptic brain is long term anticorrelated whereas, the normal brain is more or less stochastic. Among all the techniques, used here, Hurst exponent is found very useful for characterization different cases. Conclusions: In this article, differences in characteristics for normal subjects with eyes open and closed, epileptic subjects during seizure and seizure free intervals have been shown mainly using Hurst exponent. The H shows that the brain activity of a normal man is uncorrelated in nature whereas, epileptic brain activity shows long range anticorrelation.
152 - Or Perlman 2021
Purpose: To develop an automated machine-learning-based method for the discovery of rapid and quantitative chemical exchange saturation transfer (CEST) MR fingerprinting acquisition and reconstruction protocols. Methods: An MR physics governed AI s ystem was trained to generate optimized acquisition schedules and the corresponding quantitative reconstruction neural-network. The system (termed AutoCEST) is composed of a CEST saturation block, a spin dynamics module, and a deep reconstruction network, all differentiable and jointly connected. The method was validated using a variety of chemical exchange phantoms and an in-vivo mouse brain at 9.4T. Results: The acquisition times for AutoCEST optimized schedules ranged from 35-71s, with a quantitative image reconstruction time of only 29 ms. The resulting exchangeable proton concentration maps for the phantoms were in good agreement with the known solute concentrations for AutoCEST sequences (mean absolute error = 2.42 mM; Pearsons r=0.992 , p$<$0.0001), but not for an unoptimized sequence (mean absolute error = 65.19 mM; Pearsons r=-0.161, p=0.522). Similarly, improved exchange rate agreement was observed between AutoCEST and quantification of exchange using saturation power (QUESP) methods (mean absolute error: 35.8 Hz, Pearsons r=0.971, p$<$0.0001) compared to an unoptimized schedule and QUESP (mean absolute error = 58.2 Hz; Pearsons r=0.959, p$<$0.0001). The AutoCEST in-vivo mouse brain semi-solid proton volume-fractions were lower in the cortex (12.21$pm$1.37%) compared to the white-matter (19.73 $pm$ 3.30%), as expected, and the amide proton volume-fraction and exchange rates agreed with previous reports. Conclusion: AutoCEST can automatically generate optimized CEST/MT acquisition protocols that can be rapidly reconstructed into quantitative exchange parameter maps.
Background: Treatment verification with PET imaging in charged particle therapy is conventionally done by comparing measurements of spatial distributions with Monte Carlo (MC) predictions. However, decay curves can provide additional independent info rmation about the treatment and the irradiated tissue. Most studies performed so far focus on long time intervals. Here we investigate the reliability of MC predictions of space and time (decay rate) profiles shortly after irradiation, and we show how the decay rates can give an indication about the elements of which the phantom is made up. Methods and Materials: Various phantoms were irradiated in clinical and near-clinical conditions at the Cyclotron Centre of the Bronowice proton therapy centre. PET data were acquired with a planar 16x16 cm$^2$ PET system. MC simulations of particle interactions and photon propagation in the phantoms were performed using the FLUKA code. The analysis included a comparison between experimental data and MC simulations of space and time profiles, as well as a fitting procedure to obtain the various isotope contributions in the phantoms. Results and conclusions: There was a good agreement between data and MC predictions in 1-dimensional space and decay rate distributions. The fractions of $^{11}$C, $^{15}$O and $^{10}$C that were obtained by fitting the decay rates with multiple simple exponentials generally agreed well with the MC expectations. We found a small excess of $^{10}$C in data compared to what was predicted in MC, which was clear especially in the PE phantom.
69 - A. Vignati 2020
Fast procedures for the beam quality assessment and for the monitoring of beam energy modulations during the irradiation are among the most urgent improvements in particle therapy. Indeed, the online measurement of the particle beam energy could allo w assessing the range of penetration during treatments, encouraging the development of new dose delivery techniques for moving targets. Towards this end, the proof of concept of a new device, able to measure in a few seconds the energy of clinical proton beams (from 60 to 230 MeV) from the Time of Flight (ToF) of protons, is presented. The prototype consists of two Ultra Fast Silicon Detector (UFSD) pads, featuring an active thickness of 80 um and a sensitive area of 3 x 3 mm2, aligned along the beam direction in a telescope configuration, connected to a broadband amplifier and readout by a digitizer. Measurements were performed at the Centro Nazionale di Adroterapia Oncologica (CNAO, Pavia, Italy), at five different clinical beam energies and four distances between the sensors (from 7 to 97 cm) for each energy. In order to derive the beam energy from the measured average ToF, several systematic effects were considered, Monte Carlo simulations were developed to validate the method and a global fit approach was adopted to calibrate the system. The results were benchmarked against the energy values obtained from the water equivalent depths provided by CNAO. Deviations of few hundreds of keV have been achieved for all considered proton beam energies for both 67 and 97 cm distances between the sensors and few seconds of irradiation were necessary to collect the required statistics. These preliminary results indicate that a telescope of UFSDs could achieve in a few seconds the accuracy required for the clinical application and therefore encourage further investigations towards the improvement and the optimization of the present prototype.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا