ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopic signature of trimer Mott insulator and charge disproportionation in BaIrO$_3$

93   0   0.0 ( 0 )
 نشر من قبل Ryuji Okazaki
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have measured the reflectivity spectra of the barium iridate $9R$ BaIrO$_3$, the crystal structure of which consists of characteristic Ir$_3$O$_{12}$ trimers. In the high-temperature phase above the transition temperature $T_csimeq180$ K, we find that the optical conductivity involves two temperature-dependent optical transitions with an ill-defined Drude response. These features are reminiscent of the optical spectra in the organic dimer Mott insulators, implying a possible emergence of an unusual electronic state named trimer Mott insulator in BaIrO$_3$, where the carrier is localized on the trimer owing to the strong Coulomb repulsion. Along with a pronounced splitting of the phonon peak observed below $T_c$, which is a hallmark of charge disproportionation, we discuss a possible phase transition from the trimer Mott insulator to a charge-ordered insulating phase in BaIrO$_3$.

قيم البحث

اقرأ أيضاً

The crystal structure of Ba4NbRu3O12 is based on triangular planes of elongated Ru3O12 trimers oriented perpendicular to the plane. We report that it is semiconducting, that its Weiss temperature and effective magnetic moment are -155 K and 2.59 {mu} B/f.u. respectively, and that magnetic susceptibility and specific heat data indicate that it exhibits magnetic ordering near 4 K. The presence of a high density of low energy states is evidenced by a substantial Sommerfeld-like T-linear term (gamma = 31(2) mJ/mole-K^2) in the specific heat. Electronic structure calculations reveal that the electronic states at the Fermi Energy reside on the Ru3O12 trimers and that the calculated density of electronic states is high and continuous around the Fermi Energy - in other words density functional theory calculates the material to be a metal. Our results imply that Ba4NbRu3O12 is a geometrically frustrated trimer-based Mott insulator.
80 - K.-W. Lee , J. Kunes , 2004
The strength and effect of Coulomb correlations in the (superconducting when hydrated) x~1/3 and ``enhanced x~2/3 regimes of Na(x)CoO2 are evaluated using the correlated band theory LDA+U method. Our results, neglecting quantum fluctuations, are: (1) allowing only ferromagnetic order, there is a critical U_c = 3 eV, above which charge disproportionation occurs for both x=1/3 and x=2/3, (2) allowing antiferromagnetic order at x=1/3, U_c drops to 1 eV for disproportionation, (3) disproportionation and gap opening occur simultaneously, (4) in a Co(3+)-Co(4+) ordered state, antiferromagnetic coupling is favored over ferromagnetic, while below U_c ferromagnetism is favored. Comparison of the calculated Fermi level density of states compared to reported linear specific heat coefficients indicates enhancement of the order of five for x~0.7, but negligible enhancement for x~0.3. This trend is consistent with strong magnetic behavior and local moments (Curie-Weiss susceptibility) for x>0.5 while there no magnetic behavior or local moments reported for x<0.5. We suggest that the phase diagram is characterized by a crossover from effective single-band character with U >> W for x>0.5 into a three-band regime for x<0.5, where U --> U_eff <= U/sqrt(3) ~ W and correlation effects are substantially reduced.
We study the thermally driven spin state transition in a two-orbital Hubbard model with crystal field splitting, which provides a minimal description of the physics of LaCoO3. We employ the dynamical mean-field theory with quantum Monte-Carlo impurit y solver. At intermediate temperatures we find a spin disproportionated phase characterized by checkerboard order of sites with small and large spin moments. The high temperature transition from the disproportionated to a homogeneous phase is accompanied by vanishing of the charge gap. With the increasing crystal-field splitting the temperature range of the disproportionated phase shrinks and eventually disappears completely.
103 - I. Leonov , A. S. Belozerov , 2019
We study the electronic structure, magnetic state, and phase stability of paramagnetic BiNiO$_3$ near a pressure-induced Mott insulator-to-metal transition (MIT) by employing a combination of density functional and dynamical mean-field theory. We obt ain that BiNiO$_3$ exhibits an anomalous negative-charge-transfer insulating state, characterized by charge disproportionation of the Bi $6s$ states, with Ni$^{2+}$ ions. Upon a compression of the lattice volume by $sim$4.8%, BiNiO$_3$ is found to make a Mott MIT, accompanied by the change of crystal structure from triclinic $Pbar{1}$ to orthorhombic $Pbnm$. The pressure-induced MIT is associated with the melting of charge disproportionation of the Bi ions, caused by a charge transfer between the Bi $6s$ and O $2p$ states. The Ni sites remain to be Ni$^{2+}$ across the MIT, which is incompatible with the valence-skipping Ni$^{2+}$/Ni$^{3+}$ model. Our results suggest that the pressure-induced change of the crystal structure drives the MIT in BiNiO$_3$.
The archetypal $3d$ Mott insulator hematite, Fe$_2$O$_3$, is one of the basic oxide components playing an important role in mineralogy of Earths lower mantle. Its high pressure-temperature behavior, such as the electronic properties, equation of stat e, and phase stability is of fundamental importance for understanding the properties and evolution of the Earths interior. Here, we study the electronic structure, magnetic state, and lattice stability of Fe$_2$O$_3$ at ultra-high pressures using the density functional plus dynamical mean-field theory (DFT+DMFT) approach. In the vicinity of a Mott transition, Fe$_2$O$_3$ is found to exhibit a series of complex electronic, magnetic, and structural transformations. In particular, it makes a phase transition to a metal with a post-perovskite crystal structure and site-selective local moments upon compression above 75 GPa. We show that the site-selective phase transition is accompanied by a charge disproportionation of Fe ions, with Fe$^{3pm delta}$ and $delta sim 0.05$-$0.09$, implying a complex interplay between electronic correlations and the lattice. Our results suggest that site-selective local moments in Fe$_2$O$_3$ persist up to ultra-high pressures of $sim$200-250 GPa, i.e., sufficiently above the core-mantle boundary. The latter can have important consequences for understanding of the velocity and density anomalies in the Earths lower mantle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا