ﻻ يوجد ملخص باللغة العربية
The archetypal $3d$ Mott insulator hematite, Fe$_2$O$_3$, is one of the basic oxide components playing an important role in mineralogy of Earths lower mantle. Its high pressure-temperature behavior, such as the electronic properties, equation of state, and phase stability is of fundamental importance for understanding the properties and evolution of the Earths interior. Here, we study the electronic structure, magnetic state, and lattice stability of Fe$_2$O$_3$ at ultra-high pressures using the density functional plus dynamical mean-field theory (DFT+DMFT) approach. In the vicinity of a Mott transition, Fe$_2$O$_3$ is found to exhibit a series of complex electronic, magnetic, and structural transformations. In particular, it makes a phase transition to a metal with a post-perovskite crystal structure and site-selective local moments upon compression above 75 GPa. We show that the site-selective phase transition is accompanied by a charge disproportionation of Fe ions, with Fe$^{3pm delta}$ and $delta sim 0.05$-$0.09$, implying a complex interplay between electronic correlations and the lattice. Our results suggest that site-selective local moments in Fe$_2$O$_3$ persist up to ultra-high pressures of $sim$200-250 GPa, i.e., sufficiently above the core-mantle boundary. The latter can have important consequences for understanding of the velocity and density anomalies in the Earths lower mantle.
La$_2$O$_3$Fe$_2$Se$_2$ can be explained in terms of Mott localization in sharp contrast with the metallic behavior of FeSe and other parent parent compounds of iron superconductors. We demonstrate that the key ingredient that makes La$_2$O$_3$Fe$_2$
We present a computational study of PbCoO$_3$ at ambient and elevated pressure. We employ the static and dynamic treatment of local correlation in form of density functional theory + $U$ (DFT+$U$) and + dynamical mean-field theory (DFT+DMFT). Our res
We have measured the reflectivity spectra of the barium iridate $9R$ BaIrO$_3$, the crystal structure of which consists of characteristic Ir$_3$O$_{12}$ trimers. In the high-temperature phase above the transition temperature $T_csimeq180$ K, we find
Bilayer ruthenate Ca$_3$(Ru$_{1-x}$Fe$_x$)$_2$O$_7$ ($x$ = 0.05) exhibits an incommensurate magnetic soliton lattice driven by the Dzyaloshinskii-Moriya interaction. Here we report complex field-induced magnetic phase transitions and memory effect in
We perform Raman spectroscopy studies on $alpha$-RuCl$_3$ at room temperature to explore its phase transitions of magnetism and chemical bonding under pressures. The Raman measurements resolve two critical pressures, about $p_1=1.1$~GPa and $p_2=1.7$