ترغب بنشر مسار تعليمي؟ اضغط هنا

Analyzing biological and artificial neural networks: challenges with opportunities for synergy?

246   0   0.0 ( 0 )
 نشر من قبل David Barrett
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep neural networks (DNNs) transform stimuli across multiple processing stages to produce representations that can be used to solve complex tasks, such as object recognition in images. However, a full understanding of how they achieve this remains elusive. The complexity of biological neural networks substantially exceeds the complexity of DNNs, making it even more challenging to understand the representations that they learn. Thus, both machine learning and computational neuroscience are faced with a shared challenge: how can we analyze their representations in order to understand how they solve complex tasks? We review how data-analysis concepts and techniques developed by computational neuroscientists can be useful for analyzing representations in DNNs, and in turn, how recently developed techniques for analysis of DNNs can be useful for understanding representations in biological neural networks. We explore opportunities for synergy between the two fields, such as the use of DNNs as in-silico model systems for neuroscience, and how this synergy can lead to new hypotheses about the operating principles of biological neural networks.

قيم البحث

اقرأ أيضاً

This perspective piece came about through the Generative Adversarial Collaboration (GAC) series of workshops organized by the Computational Cognitive Neuroscience (CCN) conference in 2020. We brought together a number of experts from the field of the oretical neuroscience to debate emerging issues in our understanding of how learning is implemented in biological recurrent neural networks. Here, we will give a brief review of the common assumptions about biological learning and the corresponding findings from experimental neuroscience and contrast them with the efficiency of gradient-based learning in recurrent neural networks commonly used in artificial intelligence. We will then outline the key issues discussed in the workshop: synaptic plasticity, neural circuits, theory-experiment divide, and objective functions. Finally, we conclude with recommendations for both theoretical and experimental neuroscientists when designing new studies that could help to bring clarity to these issues.
The increased adoption of Artificial Intelligence (AI) presents an opportunity to solve many socio-economic and environmental challenges; however, this cannot happen without securing AI-enabled technologies. In recent years, most AI models are vulner able to advanced and sophisticated hacking techniques. This challenge has motivated concerted research efforts into adversarial AI, with the aim of developing robust machine and deep learning models that are resilient to different types of adversarial scenarios. In this paper, we present a holistic cyber security review that demonstrates adversarial attacks against AI applications, including aspects such as adversarial knowledge and capabilities, as well as existing methods for generating adversarial examples and existing cyber defence models. We explain mathematical AI models, especially new variants of reinforcement and federated learning, to demonstrate how attack vectors would exploit vulnerabilities of AI models. We also propose a systematic framework for demonstrating attack techniques against AI applications and reviewed several cyber defences that would protect AI applications against those attacks. We also highlight the importance of understanding the adversarial goals and their capabilities, especially the recent attacks against industry applications, to develop adaptive defences that assess to secure AI applications. Finally, we describe the main challenges and future research directions in the domain of security and privacy of AI technologies.
Blind source separation, i.e. extraction of independent sources from a mixture, is an important problem for both artificial and natural signal processing. Here, we address a special case of this problem when sources (but not the mixing matrix) are kn own to be nonnegative, for example, due to the physical nature of the sources. We search for the solution to this problem that can be implemented using biologically plausible neural networks. Specifically, we consider the online setting where the dataset is streamed to a neural network. The novelty of our approach is that we formulate blind nonnegative source separation as a similarity matching problem and derive neural networks from the similarity matching objective. Importantly, synaptic weights in our networks are updated according to biologically plausible local learning rules.
The recent success of brain-inspired deep neural networks (DNNs) in solving complex, high-level visual tasks has led to rising expectations for their potential to match the human visual system. However, DNNs exhibit idiosyncrasies that suggest their visual representation and processing might be substantially different from human vision. One limitation of DNNs is that they are vulnerable to adversarial examples, input images on which subtle, carefully designed noises are added to fool a machine classifier. The robustness of the human visual system against adversarial examples is potentially of great importance as it could uncover a key mechanistic feature that machine vision is yet to incorporate. In this study, we compare the visual representations of white- and black-box adversarial examples in DNNs and humans by leveraging functional magnetic resonance imaging (fMRI). We find a small but significant difference in representation patterns for different (i.e. white- versus black- box) types of adversarial examples for both humans and DNNs. However, human performance on categorical judgment is not degraded by noise regardless of the type unlike DNN. These results suggest that adversarial examples may be differentially represented in the human visual system, but unable to affect the perceptual experience.
While Artificial Neural Networks (ANNs) have yielded impressive results in the realm of simulated intelligent behavior, it is important to remember that they are but sparse approximations of Biological Neural Networks (BNNs). We go beyond comparison of ANNs and BNNs to introduce principles from BNNs that might guide the further development of ANNs as embodied neural models. These principles include representational complexity, complex network structure/energetics, and robust function. We then consider these principles in ways that might be implemented in the future development of ANNs. In conclusion, we consider the utility of this comparison, particularly in terms of building more robust and dynamic ANNs. This even includes constructing a morphology and sensory apparatus to create an embodied ANN, which when complemented with the organizational and functional advantages of BNNs unlocks the adaptive potential of lifelike networks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا