ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct characterisation of tuneable few-femtosecond dispersive-wave pulses in the deep UV

79   0   0.0 ( 0 )
 نشر من قبل Christian Brahms
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dispersive wave emission (DWE) in gas-filled hollow-core dielectric waveguides is a promising source of tuneable coherent and broadband radiation, but so far the generation of few-femtosecond pulses using this technique has not been demonstrated. Using in-vacuum frequency-resolved optical gating, we directly characterise tuneable 3fs pulses in the deep ultraviolet generated via DWE. Through numerical simulations, we identify that the use of a pressure gradient in the waveguide is critical for the generation of short pulses.



قيم البحث

اقرأ أيضاً

The ongoing development of intense high-harmonic generation (HHG) sources has recently enabled highly nonlinear ionization of atoms by the absorption of at least 10 extreme-ultraviolet (XUV) photons within a single atom [Senfftleben textit{et al.}, a rXiv1911.01375]. Here we investigate the role that reshaping of the fundamental, few-cycle, near-infrared (NIR) driving laser within the 30-cm-long HHG Xe medium plays in the generation of the intense HHG pulses. Using an incident NIR intensity that is higher than what is required for phase-matched HHG, signatures of reshaping are found by measuring the NIR blueshift and the fluorescence from the HHG medium along the propagation axis. These results are well reproduced by numerical calculations that show temporal compression of the NIR pulses in the HHG medium. The simulations predict that after refocusing an XUV beam waist radius of 320 nm and a clean attosecond pulse train can be obtained in the focal plane, with an estimated XUV peak intensity of 9x10^15 W/cm^2. Our results show that XUV intensities that were previously only available at large-scale facilities can now be obtained using moderately powerful table-top light sources.
We report on the nonlinear temporal compression of mJ energy pulses from a Ti:Sa chirped pulse amplifier system in a multipass cell filled with argon. The pulses are compressed from 30 fs down to 5.3 fs, corresponding to two optical cycles. The post- compressed beam exhibits excellent spatial quality and homogeneity. These results pave the way to robust and energy-scalable compression of Ti:Sa pulses down to the few-cycle regime.
Although ultraviolet (UV) light is important in many areas of science and technology, there are very few if any lasers capable of delivering wavelength-tunable ultrashort UV pulses at MHz repetition rates. Here we report the generation of deep-UV las er pulses at MHz repetition rates and mu J-energies by means of dispersive wave (DW) emission from self-compressed solitons in gas-filled single-ring hollow-core photonic crystal fiber (SR-PCF). Pulses from an ytterbium fiber laser (~300 fs) are first compressed to ~25 fs in a SR-PCF-based nonlinear compression stage, and subsequently used to pump a second SR-PCF stage for broadband DW generation in the deep UV. The UV wavelength is tunable by selecting the gas species and the pressure. At 100 kHz repetition rate, a pulse energy of 1.05 mu J was obtained at 205 nm (average power 0.1 W), and at 1.92 MHz, a pulse energy of 0.54 mu J was obtained at 275 nm (average power 1.03 W).
We exploit inverse Raman scattering and solvated electron absorption to perform a quantitative characterization of the energy loss and ionization dynamics in water with tightly focused near-infrared femtosecond pulses. A comparison between experiment al data and numerical simulations suggests that the ionization energy of water is 8 eV, rather than the commonly used value of 6.5 eV. We also introduce an equation for the Raman gain valid for ultra-short pulses that validates our experimental procedure.
We present an analysis of two experimental approaches to controlling the directionality of molecular rotation with ultrashort laser pulses. The two methods are based on the molecular interaction with either a pair of pulses (a double kick scheme) or a longer pulse sequence (a chiral pulse train scheme). In both cases, rotational control is achieved by varying the polarization of and the time delay between the consecutive laser pulses. Using the technique of polarization sensitive resonance-enhanced multi-photon ionization, we show that both methods produce significant rotational directionality. We demonstrate that increasing the number of excitation pulses supplements the ability to control the sense of molecular rotation with quantum state selectivity, i.e. predominant excitation of a single rotational state. We also demonstrate the ability of both techniques to generate counter-rotation of molecular nuclear spin isomers (here, ortho- and para-nitrogen) and molecular isotopologues (here, 14N_2 and 15N_2).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا