ﻻ يوجد ملخص باللغة العربية
We present results derived from the analysis of spectropolarimetric measurements of active region AR12546, which represents one of the largest sunspots to have emerged onto the solar surface over the last $20$ years. The region was observed with full-Stokes scans of the Fe I 617.3 nm and Ca II 854.2 nm lines with the Interferometric BIdimensional Spectrometer (IBIS) instrument at the Dunn Solar Telescope over an uncommon, extremely long time interval exceeding three hours. Clear circular polarization (CP) oscillations localized at the umbra-penumbra boundary of the observed region were detected. Furthermore, the multi-height data allowed us to detect the downward propagation of both CP and intensity disturbances at $2.5-3$~mHz, which was identified by a phase delay between these two quantities. These results are interpreted as a propagating magneto-hydrodynamic surface mode in the observed sunspot.
The instrumental advances made in this new era of 4-meter class solar telescopes with unmatched spectropolarimetric accuracy and sensitivity, will enable the study of chromospheric magnetic fields and their dynamics with unprecedented detail. In this
We describe and illustrate a mechanism whereby convective aggregation and eastward propagating equatorial disturbances, similar in some respects to the Madden--Julian oscillation, arise. We construct a simple, explicit system consisting only of the s
Penumbral Microjets (PMJs) are short-lived jets found in the penumbra of sunspots, first observed in wide-band Ca H-line observations as localized brightenings, and are thought to be caused by magnetic reconnection. Earlier work on PMJs has been focu
With a test-particle simulation, we investigate the effect of large-scale coronal magnetic fields on electron acceleration at an outward-propagating coronal shock with a circular front. The coronal field is approximated by an analytical solution with
A high-resolution spectropolarimetric survey of all (573) stars brighter than magnitude V=4 has been undertaken with Narval at TBL, ESPaDOnS at CFHT, and HarpsPol at ESO, as a ground-based support to the BRITE constellation of nano-satellites in the