ﻻ يوجد ملخص باللغة العربية
We describe and illustrate a mechanism whereby convective aggregation and eastward propagating equatorial disturbances, similar in some respects to the Madden--Julian oscillation, arise. We construct a simple, explicit system consisting only of the shallow water equations plus a humidity variable; moisture enters via evaporation from a wet surface, is transported by the flow and removed by condensation, so providing a mass source to the height field. For a broad range of parameters the system is excitable and self-sustaining, even if linearly stable, with condensation producing convergence and gravity waves that, acting together, trigger more condensation. On the equatorial beta-plane the convection first aggregates near the equator, generating patterns related to those in the Matsuno--Gill problem. However, the pattern is unsteady and more convection is triggered on its eastern edge, leading to a precipitating disturbance that progresses eastward. The effect is enhanced by westward prevailing winds that increase the evaporation east of the disturbance. The pattern is confined to a region within a few deformation radii of equator because here the convection can best create the convergence needed to organize into a self-sustaining pattern. Formation of the disturbance preferentially occurs where the surface is warmer and sufficient time (a few tens of days) must pass before conditions arise that enable the disturbance to reform, as is characteristic both of excitable systems and the MJO itself. The speed of the disturbance depends on the efficiency of evaporation and the heat released by condensation, and is typically a few meters per second, much less than the Kelvin wave speed.
We present results derived from the analysis of spectropolarimetric measurements of active region AR12546, which represents one of the largest sunspots to have emerged onto the solar surface over the last $20$ years. The region was observed with full
Raylaigh-Benard convection is one of the most well-studied models in fluid mechanics. Atmospheric convection, one of the most important components of the climate system, is by comparison complicated and poorly understood. A key attribute of atmospher
Convective self-aggregation refers to a phenomenon that random convection can self-organize into large-scale clusters over an ocean surface with uniform temperature in cloud-resolving models. Understanding its physics provides insights into the devel
This paper demonstrates the efficacy of data-driven localization mappings for assimilating satellite-like observations in a dynamical system of intermediate complexity. In particular, a sparse network of synthetic brightness temperature measurements
Turbulence is ever produced in the low-viscosity/large-scale fluid flows by the velocity shears and, in unstable stratification, by buoyancy forces. It is commonly believed that both mechanisms produce the same type of chaotic motions, namely, the ed