ترغب بنشر مسار تعليمي؟ اضغط هنا

Sub-Chandrasekhar progenitors favoured for type Ia supernovae: Evidence from late-time spectroscopy

94   0   0.0 ( 0 )
 نشر من قبل Andreas Fl\\\"ors
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A non-local-thermodynamic-equilibrium (NLTE) level population model of the first and second ionisation stages of iron, nickel and cobalt is used to fit a sample of XShooter optical + near-infrared (NIR) spectra of Type Ia supernovae (SNe Ia). From the ratio of the NIR lines to the optical lines limits can be placed on the temperature and density of the emission region. We find a similar evolution of these parameters across our sample. Using the evolution of the Fe II 12$,$570$,mathring{A},$to 7$,$155$,mathring{A},$line as a prior in fits of spectra covering only the optical wavelengths we show that the 7200$,mathring{A},$feature is fully explained by [Fe II] and [Ni II] alone. This approach allows us to determine the abundance of Ni II$,$/$,$Fe II for a large sample of 130 optical spectra of 58 SNe Ia with uncertainties small enough to distinguish between Chandrasekhar mass (M$_{text{Ch}}$) and sub-Chandrasekhar mass (sub-M$_{text{Ch}}$) explosion models. We conclude that the majority (85$%$) of normal SNe Ia have a Ni/Fe abundance that is in agreement with predictions of sub-M$_{text{Ch}}$ explosion simulations of $sim Z_odot$ progenitors. Only a small fraction (11$%$) of objects in the sample have a Ni/Fe abundance in agreement with M$_{text{Ch}}$ explosion models.

قيم البحث

اقرأ أيضاً

80 - Evan N. Kirby 2019
There is no consensus on the progenitors of Type Ia supernovae (SNe Ia) despite their importance for cosmology and chemical evolution. We address this question by using our previously published catalogs of Mg, Si, Ca, Cr, Fe, Co, and Ni abundances in dwarf galaxy satellites of the Milky Way to constrain the mass at which the white dwarf explodes during a typical SN Ia. We fit a simple bi-linear model to the evolution of [X/Fe] with [Fe/H], where X represents each of the elements mentioned above. We use the evolution of [Mg/Fe] coupled with theoretical supernova yields to isolate what fraction of the elements originated in SNe Ia. Then, we infer the [X/Fe] yield of SNe Ia for all of the elements except Mg. We compare these observationally inferred yields to recent theoretical predictions for two classes of Chandrasekhar-mass (M_Ch) SN Ia as well as sub-M_Ch SNe Ia. Most of the inferred SN Ia yields are consistent with all of the theoretical models, but [Ni/Fe] is consistent only with sub-M_Ch models. We conclude that the dominant type of SN Ia in ancient dwarf galaxies is the explosion of a sub-M_Ch white dwarf. The Milky Way and dwarf galaxies with extended star formation histories have higher [Ni/Fe] abundances, which could indicate that the dominant class of SN Ia is different for galaxies where star formation lasted for at least several Gyr.
There are two classes of viable progenitors for normal Type Ia supernovae (SNe Ia): systems in which a white dwarf explodes at the Chandrasekhar mass ($M_{ch}$), and systems in which a white dwarf explodes below the Chandrasekhar mass (sub-$M_{ch}$). It is not clear which of these channels is dominant; observations and light curve modeling have provided evidence for both. Here we use an extensive grid of 4500 time-dependent, multiwavelength radiation transport simulations to show that the sub-$M_{ch}$ model can reproduce the entirety of the width-luminosity relation (WLR), while the $M_{ch}$ model can only produce the brighter events $(0.8 < Delta M_{15}(B) < 1.55)$, implying that fast-declining SNe Ia come from sub-$M_{ch}$ explosions. We do not assume a particular theoretical paradigm for the progenitor or explosion mechanism, but instead construct parameterized models that vary the mass, kinetic energy, and compositional structure of the ejecta, thereby realizing a broad range of possible outcomes of white dwarf explosions. We provide fitting functions based on our large grid of detailed simulations that map observable properties of SNe Ia such as peak brightness and light curve width to physical parameters such as $^{56}mathrm{Ni}$ and total ejected mass. These can be used to estimate the physical properties of observed SNe Ia.
Type Ia supernovae are generally thought to be due to the thermonuclear explosions of carbon-oxygen white dwarfs with masses near the Chandrasekhar mass. This scenario, however, has two long-standing problems. First, the explosions do not naturally p roduce the correct mix of elements, but have to be finely tuned to proceed from sub-sonic deflagration to super-sonic detonation. Second, population models and observations give formation rates of near-Chandrasekhar white dwarfs that are far too small. Here, we suggest that type Ia supernovae instead result from mergers of roughly equal-mass carbon-oxygen white dwarfs, including those that produce sub-Chandrasekhar mass remnants. Numerical studies of such mergers have shown that the remnants consist of rapidly rotating cores that contain most of the mass and are hottest in the center, surrounded by dense, small disks. We argue that the disks accrete quickly, and that the resulting compressional heating likely leads to central carbon ignition. This ignition occurs at densities for which pure detonations lead to events similar to type Ia supernovae. With this merger scenario, we can understand the type Ia rates, and have plausible reasons for the observed range in luminosity and for the bias of more luminous supernovae towards younger populations. We speculate that explosions of white dwarfs slowly brought to the Chandrasekhar limit---which should also occur---are responsible for some of the atypical type Ia supernovae.
We examine the late-time (t > 200 days after peak brightness) spectra of Type Iax supernovae (SNe Iax), a low-luminosity, low-energy class of thermonuclear stellar explosions observationally similar to, but distinct from, Type Ia supernovae. We prese nt new spectra of SN 2014dt, resulting in the most complete published late-time spectral sequence of a SN Iax. At late times, SNe Iax have generally similar spectra, all with a similar continuum shape and strong forbidden-line emission. However, there is also significant diversity where some late-time SN Iax spectra display narrow P-Cygni features and a continuum indicative of a photosphere in addition to strong narrow forbidden lines, while others have no obvious P-Cygni features, strong broad forbidden lines, and weak narrow forbidden lines. Finally, some SNe Iax have spectra intermediate to these two varieties with weak P-Cygni features and broad/narrow forbidden lines of similar strength. We find that SNe Iax with strong broad forbidden lines also tend to be more luminous and have higher-velocity ejecta at peak brightness. We estimate blackbody and kinematic radii of the late-time photosphere, finding the latter an order of magnitude larger than the former. We propose a two-component model that solves this discrepancy and explains the diversity of the late-time spectra of SNe Iax. In this model, the broad forbidden lines originate from the SN ejecta, while the photosphere, P-Cygni lines, and narrow forbidden lines originate from a wind launched from the remnant of the progenitor white dwarf and is driven by the radioactive decay of newly synthesized material left in the remnant. The relative strength of the two components accounts for the diversity of late-time SN Iax spectra. This model also solves the puzzle of a long-lived photosphere and slow late-time decline of SNe Iax. (Abridged)
Type Ia supernovae (SNe Ia) are manifestations of stars deficient of hydrogen and helium disrupting in a thermonuclear runaway. While explosions of carbon-oxygen white dwarfs are thought to account for the majority of events, part of the observed div ersity may be due to varied progenitor channels. We demonstrate that helium stars with masses between $sim$1.8 and 2.5 M$_{odot}$ may evolve into highly degenerate, near-Chandrasekhar mass cores with helium-free envelopes that subsequently ignite carbon and oxygen explosively at densities $sim(1.8-5.9)times 10^{9}$g cm$^{-3}$. This happens either due to core growth from shell burning (when the core has a hybrid CO/NeO composition), or following ignition of residual carbon triggered by exothermic electron captures on $^{24}$Mg (for a NeOMg-dominated composition). We argue that the resulting thermonuclear runaways is likely to prevent core collapse, leading to the complete disruption of the star. The available nuclear energy at the onset of explosive oxygen burning suffices to create ejecta with a kinetic energy of $sim$10$^{51}$ erg, as in typical SNe Ia. Conversely, if these runaways result in partial disruptions, the corresponding transients would resemble SN Iax events similar to SN 2002cx. If helium stars in this mass range indeed explode as SNe Ia, then the frequency of events would be comparable to the observed SN Ib/c rates, thereby sufficing to account for the majority of SNe Ia in star-forming galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا