ﻻ يوجد ملخص باللغة العربية
Using the background field method, we study in a general covariant gauge the renormalization of the 6-dimensional Yang-Mills theory. This requires background gauge invariant counterterms, some of which do not vanish on shell. Such counterterms occur, even off-shell, with gauge-independent coefficients. The analysis is done at one loop order and the extension to higher orders is discussed by means of the BRST identities. We examine the behaviour of the beta function, which implies that this theory is not asymptotically free.
The background gauge renormalization of the first order formulation of the Yang-Mills theory is studied by using the BRST identities. Together with the background symmetry, these identities allow for an iterative proof of renormalizability to all ord
In the paper, within the background field method, the renormalization and the gauge dependence is studied as for an SU(2) Yang-Mills theory with multiplets of spinor and scalar fields. By extending the quantum action of the BV-formalism with an extra
The renormalization of N=1 Super Yang-Mills theory is analysed in the Wess-Zumino gauge, employing the Landau condition. An all orders proof of the renormalizability of the theory is given by means of the Algebraic Renormalization procedure. Only thr
The spectrum of the massive CPT-odd Yang-Mills propagator with Lorentz violation is performed at tree-level. The modification is due to mass terms generated by the exigence of multiplicative renormalizability of Yang-Mills theory with Lorentz violati
We show that, starting from known exact classical solutions of the Yang-Mills theory in three dimensions, the string tension is obtained and the potential is consistent with a marginally confining theory. The potential we obtain agrees fairly well wi