ﻻ يوجد ملخص باللغة العربية
The concept of a $1$-rotational factorization of a complete graph under a finite group $G$ was studied in detail by Buratti and Rinaldi. They found that if $G$ admits a $1$-rotational $2$-factorization, then the involutions of $G$ are pairwise conjugate. We extend their result by showing that if a finite group $G$ admits a $1$-rotational $k=2^nm$-factorization where $ngeq 1$, and $m$ is odd, then $G$ has at most $m(2^n-1)$ conjugacy classes containing involutions. Also, we show that if $G$ has exactly $m(2^n-1)$ conjugacy classes containing involutions, then the product of a central involution with an involution in one conjugacy class yields an involution in a different conjugacy class. We then demonstrate a method of constructing a $1$-rotational $2n$-factorization under $G times mathbb{Z}_n$ given a $1$-rotational $2$-factorization under a finite group $G$. This construction, given a $1$-rotational solution to the Oberwolfach problem $OP(a_{infty},a_1, a_2 cdots, a_n)$, allows us to find a solution to $OP(2a_{infty}-1,^2a_1, ^2a_2cdots, ^2a_n)$ when the $a_i$s are even ($i eq infty$), and $OP(p(a_{infty}-1)+1, ^pa_1, ^pa_2 cdots, ^pa_n)$ when $p$ is an odd prime, with no restrictions on the $a_i$s.
We prove that any quasirandom dense large graph in which all degrees are equal and even can be decomposed into any given collection of two-factors (2-regular spanning subgraphs). A special case of this result gives a new solution to the Oberwolfach problem.
The Oberwolfach problem, posed by Ringel in 1967, asks for a decomposition of $K_{2n+1}$ into edge-disjoint copies of a given $2$-factor. We show that this can be achieved for all large $n$. We actually prove a significantly more general result, whic
If G is a graph and H is a set of subgraphs of G, then an edge-coloring of G is called H-polychromatic if every graph from H gets all colors present in G on its edges. The H-polychromatic number of G, denoted poly_H(G), is the largest number of color
Let $textbf{k} := (k_1,ldots,k_s)$ be a sequence of natural numbers. For a graph $G$, let $F(G;textbf{k})$ denote the number of colourings of the edges of $G$ with colours $1,dots,s$ such that, for every $c in {1,dots,s}$, the edges of colour $c$ con
A universal cycle for permutations of length $n$ is a cyclic word or permutation, any factor of which is order-isomorphic to exactly one permutation of length $n$, and containing all permutations of length $n$ as factors. It is well known that univer