ﻻ يوجد ملخص باللغة العربية
If G is a graph and H is a set of subgraphs of G, then an edge-coloring of G is called H-polychromatic if every graph from H gets all colors present in G on its edges. The H-polychromatic number of G, denoted poly_H(G), is the largest number of colors in an H-polychromatic coloring. In this paper, poly_H(G) is determined exactly when G is a complete graph and H is the family of all 1-factors. In addition poly_H(G) is found up to an additive constant term when G is a complete graph and H is the family of all 2-factors, or the family of all Hamiltonian cycles.
In this paper, we study the achromatic and the pseudoachromatic numbers of planar and outerplanar graphs as well as planar graphs of girth 4 and graphs embedded on a surface. We give asymptotically tight results and lower bounds for maximal embedded graphs.
In 1930, Kuratowski showed that $K_{3,3}$ and $K_5$ are the only two minor-minimal non-planar graphs. Robertson and Seymour extended finiteness of the set of forbidden minors for any surface. v{S}ir{a}v{n} and Kochol showed that there are infinitely
Posas theorem states that any graph $G$ whose degree sequence $d_1 le ldots le d_n$ satisfies $d_i ge i+1$ for all $i < n/2$ has a Hamilton cycle. This degree condition is best possible. We show that a similar result holds for suitable subgraphs $G$
A total coloring of a graph $G$ is a coloring of its vertices and edges such that no adjacent vertices, edges, and no incident vertices and edges obtain the same color. An interval total $t$-coloring of a graph $G$ is a total coloring of $G$ with col
We prove that if $G$ is a $k$-partite graph on $n$ vertices in which all of the parts have order at most $n/r$ and every vertex is adjacent to at least a $1-1/r+o(1)$ proportion of the vertices in every other part, then $G$ contains the $(r-1)$-st power of a Hamiltonian cycle