ﻻ يوجد ملخص باللغة العربية
We study transport of interacting electrons in a low-dimensional disordered system at low temperature $T$. In view of localization by disorder, the conductivity $sigma(T)$ may only be non-zero due to electron-electron scattering. For weak interactions, the weak-localization regime crosses over with lowering $T$ into a dephasing-induced power-law hopping. As $T$ is further decreased, the Anderson localization in Fock space crucially affects $sigma(T)$, inducing a transition at $T=T_c$, so that $sigma(T<T_c)=0$. The critical behavior of $sigma(T)$ above $T_c$ is $lnsigma(T)propto - (T-T_c)^{-1/2}$. The mechanism of transport in the critical regime is many-particle transitions between distant states in Fock space.
Many-body localization is a fascinating theoretical concept describing the intricate interplay of quantum interference, i.e. localization, with many-body interaction induced dephasing. Numerous computational tests and also several experiments have be
We consider the dynamics of an electron in an infinite disordered metallic wire. We derive exact expressions for the probability of diffusive return to the starting point in a given time. The result is valid for wires with or without time-reversal sy
We analyze the effects of disorder on the correlation functions of one-dimensional quantum models of fermions and spins with long-range interactions that decay with distance $ell$ as a power-law $1/ell^alpha$. Using a combination of analytical and nu
In one-dimensional electronic systems with strong repulsive interactions, charge excitations propagate much faster than spin excitations. Such systems therefore have an intermediate temperature range [termed the spin-incoherent Luttinger liquid (SILL
We study quantum transport in anisotropic 3D disorder and show that non rotation invariant correlations can induce rich diffusion and localization properties. For instance, structured finite-range correlations can lead to the inversion of the transpo