ﻻ يوجد ملخص باللغة العربية
Scientific hypotheses in a variety of applications have domain-specific structures, such as the tree structure of the International Classification of Diseases (ICD), the directed acyclic graph structure of the Gene Ontology (GO), or the spatial structure in genome-wide association studies. In the context of multiple testing, the resulting relationships among hypotheses can create redundancies among rejections that hinder interpretability. This leads to the practice of filtering rejection sets obtained from multiple testing procedures, which may in turn invalidate their inferential guarantees. We propose Focused BH, a simple, flexible, and principled methodology to adjust for the application of any pre-specified filter. We prove that Focused BH controls the false discovery rate under various conditions, including when the filter satisfies an intuitive monotonicity property and the p-values are positively dependent. We demonstrate in simulations that Focused BH performs well across a variety of settings, and illustrate this methods practical utility via analyses of real datasets based on ICD and GO.
Selecting relevant features associated with a given response variable is an important issue in many scientific fields. Quantifying quality and uncertainty of a selection result via false discovery rate (FDR) control has been of recent interest. This
Variable selection on the large-scale networks has been extensively studied in the literature. While most of the existing methods are limited to the local functionals especially the graph edges, this paper focuses on selecting the discrete hub struct
Consider the online testing of a stream of hypotheses where a real--time decision must be made before the next data point arrives. The error rate is required to be controlled at {all} decision points. Conventional emph{simultaneous testing rules} are
We develop a new class of distribution--free multiple testing rules for false discovery rate (FDR) control under general dependence. A key element in our proposal is a symmetrized data aggregation (SDA) approach to incorporating the dependence struct
We propose a new method, semi-penalized inference with direct false discovery rate control (SPIDR), for variable selection and confidence interval construction in high-dimensional linear regression. SPIDR first uses a semi-penalized approach to const