ترغب بنشر مسار تعليمي؟ اضغط هنا

Study on the strong decays of $phi(2170)$ and a grand expectation for the future charm-tau factory

128   0   0.0 ( 0 )
 نشر من قبل HongWei Ke
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The present data imply that $phi(2170)$ may not be an excited state of $phi$, but is a four quark state with $ssbar s bar s$ constituents. Furthermore, there are no two mesons of $sbar s$ available to form a molecule which fits the mass spectrum of $phi(2170)$, thus we suggest it should be an $ssbar s bar s$ tetraquark state. In this scenario, we estimate its decay rates through the fall-apart mechanism. Our theoretical estimates indicate that its main decay modes should be $phi(2170)$ into $phi f_0(980)$, $ h_1eta$, $ h_1eta$, $K_1(1270)K$ and $K_1(1400)K$. Under this hypothesis the modes $phi(2170)to K^*(890)^0bar K^*(890)^0$, $K^+K^-$ and $K^0_LK^0_S$ should be relatively suppressed. Since the width of $h_1$ is rather large, at present it is hard to gain precise data on $BR(phi(2170)to h_1eta)$ and $BR(phi(2170)to h_1eta)$ whose measurements may be crucial for drawing a definite conclusion about the inner assignment of $phi(2170)$. We lay our expectation to the proposed charm-tau factory which will have much larger luminosity and better capacities.

قيم البحث

اقرأ أيضاً

69 - David M. Asner 2006
Design studies for a Super Flavor Factory (SFF), an asymmetric energy e+e- collider utilizing International Linear Collider (ILC) techniques and technology, are in progress. The capablity to run at center-of-mass energies near 3.770 GeV could be incl uded in the initial design. This report discusses the physics that can be probed with luminosity of 10^{35} 1/cm^2 1/s near tau-charm threshold.
63 - A. J. Bevan 2015
Tests of discrete symmetry violation have played an important role in understand the structure of weak interactions in the Standard Model of particle physics. Historically these measurements have been extensively performed at experiments with large s amples of K and B mesons. A high luminosity tau-charm facility presents physicists with the opportunity to comprehensively explore discrete symmetry violation and test the Standard Model using tau leptons, charm mesons and charmed baryons. This paper discusses several possible measurements for a future tau-charm factory.
The present Report concerns the current status of the Italian Tau/Charm accelerator project and in particular discusses the issues related to the lattice design, to the accelerators systems and to the associated conventional facilities. The project a ims at realizing a variable energy Flavor Factory between 1 and 4.6 GeV in the center of mass, and succeeds to the SuperB project from which it inherits most of the solutions proposed in this document. The work comes from a cooperation involving the INFN Frascati National Laboratories accelerator experts, the young newcomers, mostly engineers, of the Cabibbo Lab consortium and key collaborators from external laboratories.
The strong decays of charm-strange baryons up to N=2 shell are studied in a chiral quark model. The theoretical predictions for the well determined charm-strange baryons, $Xi_c^*(2645)$, $Xi_c(2790)$ and $Xi_c(2815)$, are in good agreement with the e xperimental data. This model is also extended to analyze the strong decays of the other newly observed charm-strange baryons $Xi_c(2930)$, $Xi_c(2980)$, $Xi_c(3055)$, $Xi_c(3080)$ and $Xi_c(3123)$. Our predictions are given as follows. (i) $Xi_c(2930)$ might be the first $P$-wave excitation of $Xi_c$ with $J^P=1/2^-$, favors the $|Xi_c ^2P_lambda 1/2^->$ or $|Xi_c ^4P_lambda 1/2^->$ state. (ii) $Xi_c(2980)$ might correspond to two overlapping $P$-wave states $|Xi_c ^2P_rho 1/2^->$ and $|Xi_c ^2P_rho 3/2^->$, respectively. The $Xi_c(2980)$ observed in the $Lambda_c^+bar{K}pi$ final state is most likely to be the $|Xi_c ^2P_rho 1/2^->$ state, while the narrower resonance with a mass $msimeq 2.97$ GeV observed in the $Xi_c^*(2645)pi$ channel favors to be assigned to the $|Xi_c ^2P_rho 3/2^->$ state. (iii) $Xi_c(3080)$ favors to be classified as the $|Xi_c S_{rhorho} 1/2^+>$ state, i.e., the first radial excitation (2S) of $Xi_c$. (iv) $Xi_c(3055)$ is most likely to be the first $D$-wave excitation of $Xi_c$ with $J^P=3/2^+$, favors the $|Xi_c ^2D_{lambdalambda} 3/2^+>$ state. (v) $Xi_c(3123)$ might be assigned to the $|Xi_c ^4D_{lambdalambda} 3/2^+>$, $|Xi_c ^4D_{lambdalambda} 5/2^+>$, or $|Xi_c ^2D_{rhorho} 5/2^+>$ state. As a by-product, we calculate the strong decays of the bottom baryons $Sigma_b^{pm}$, $Sigma_b^{*pm}$ and $Xi_b^*$, which are in good agreement with the recent observations as well.
We study strong decays of the possible fully-charm tetraquarks recently observed by LHCb, and calculate their relative branching ratios through the Fierz rearrangement. Together with our previous QCD sum rule study [Phys. Lett. B 773, 247 (2017)], ou r results suggest that the broad structure around $6.2$-$6.8$ GeV can be interpreted as an $S$-wave $ccbar c bar c$ tetraquark state with $J^{PC} = 0^{++}$ or $2^{++}$, and the narrow structure around 6.9 GeV can be interpreted as a $P$-wave one with $J^{PC} = 0^{-+}$ or $1^{-+}$. These structures were observed in the di-$J/psi$ invariant mass spectrum, and we propose to confirm them in the di-$eta_c$, $J/psi h_c$, $eta_c chi_{c0}$, and $eta_c chi_{c1}$ channels. We also propose to search for their partner states having the negative charge-conjugation parity in the $J/psi eta_c$, $J/psi chi_{c0}$, $J/psi chi_{c1}$, and $eta_c h_c$ channels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا