ﻻ يوجد ملخص باللغة العربية
We study strong decays of the possible fully-charm tetraquarks recently observed by LHCb, and calculate their relative branching ratios through the Fierz rearrangement. Together with our previous QCD sum rule study [Phys. Lett. B 773, 247 (2017)], our results suggest that the broad structure around $6.2$-$6.8$ GeV can be interpreted as an $S$-wave $ccbar c bar c$ tetraquark state with $J^{PC} = 0^{++}$ or $2^{++}$, and the narrow structure around 6.9 GeV can be interpreted as a $P$-wave one with $J^{PC} = 0^{-+}$ or $1^{-+}$. These structures were observed in the di-$J/psi$ invariant mass spectrum, and we propose to confirm them in the di-$eta_c$, $J/psi h_c$, $eta_c chi_{c0}$, and $eta_c chi_{c1}$ channels. We also propose to search for their partner states having the negative charge-conjugation parity in the $J/psi eta_c$, $J/psi chi_{c0}$, $J/psi chi_{c1}$, and $eta_c h_c$ channels.
With the spin rearrangement, we have performed a comprehensive investigation of the decay patterns of the S-wave tetraquarks and P-wave tetraquarks where the P-wave excitation exists either between the diquark and anti-diquark pair or inside the diqu
The open-charm strong decays of higher charmonium states up to the mass of the $6P$ multiplet are systematically studied in the $^3P_0$ model. The wave functions of the initial charmonium states are calculated in the linear potential (LP) and screene
The recent observation by the D0 collaboration of a narrow structure X(5568) consisting of four different quark flavors bdus, has not been confirmed by LHCb. More data and dedicated analyses are needed to cover a larger mass range. In the tightly bou
We perform a SU(3) analysis for both semi-leptonic and non-leptonic heavy meson weak decays into a pseudoscalar meson and a fully-light tetraquark in 10 or 27 representation. A reduction of the SU(3) representation tensor for the fully-light tetraqua
In this work, we systematically study the mass spectrum of the fully heavy tetraquark in an extended chromomagnetic model, which includes both color and chromomagnetic interactions. Numerical results indicate that the energy level is mainly determine