ترغب بنشر مسار تعليمي؟ اضغط هنا

Graphene Nanoribbons on Hexagonal Boron Nitride: Deposition and Transport Characterization

106   0   0.0 ( 0 )
 نشر من قبل Jonathan Eroms
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Chemically synthesized cove-type graphene nanoribbons (cGNRs) of different widths were brought into dispersion and drop-cast onto exfoliated hexagonal boron nitride (hBN) on a Si/SiO2 chip. With AFM we observed that the cGNRs form ordered domains aligned along the crystallographic axes of the hBN. Using electron beam lithography and metallization, we contacted the cGNRs with NiCr/Au, or Pd contacts and measured their I-V-characteristics. The transport through the ribbons was dominated by the Schottky behavior of the contacts between the metal and the ribbon.

قيم البحث

اقرأ أيضاً

The integrated inplane growth of two dimensional materials with similar lattices, but distinct electrical properties, could provide a promising route to achieve integrated circuitry of atomic thickness. However, fabrication of edge specific GNR in th e lattice of hBN still remains an enormous challenge for present approaches. Here we developed a two step growth method and successfully achieved sub 5 nm wide zigzag and armchair GNRs embedded in hBN, respectively. Further transport measurements reveal that the sub 7 nm wide zigzag GNRs exhibit openings of the band gap inversely proportional to their width, while narrow armchair GNRs exhibit some fluctuation in the bandgap width relationship.This integrated lateral growth of edge specific GNRs in hBN brings semiconducting building blocks to atomically thin layer, and will provide a promising route to achieve intricate nanoscale electrical circuits on high quality insulating hBN substrates.
300 - M. Gurram , S. Omar , S. Zihlmann 2016
We study fully hexagonal boron nitride (hBN)-encapsulated graphene spin valve devices at room temperature. The device consists of a graphene channel encapsulated between two crystalline hBN flakes; thick-hBN flake as a bottom gate dielectric substrat e which masks the charge impurities from SiO2/Si substrate and single-layer thin-hBN flake as a tunnel barrier. Full encapsulation prevents the graphene from coming in contact with any polymer/chemical during the lithography and thus gives homogeneous charge and spin transport properties across different regions of the encapsulated graphene. Further, even with the multiple electrodes in between the injection and the detection electrodes which are in conductivity mismatch regime, we observe spin transport over 12.5 um long distance under the thin-hBN encapsulated graphene channel, demonstrating the clean interface and the pin-hole free nature of the thin-hBN as an efficient tunnel barrier.
171 - S. Engels , A. Epping , C. Volk 2013
We report on the fabrication and characterization of etched graphene quantum dots (QDs) on hexagonal boron nitride (hBN) and SiO2 with different island diameters. We perform a statistical analysis of Coulomb peak spacings over a wide energy range. Fo r graphene QDs on hBN, the standard deviation of the normalized peak spacing distribution decreases with increasing QD diameter, whereas for QDs on SiO2 no diameter dependency is observed. In addition, QDs on hBN are more stable under the influence of perpendicular magnetic fields up to 9T. Both results indicate a substantially reduced substrate induced disorder potential in graphene QDs on hBN.
When a crystal is subjected to a periodic potential, under certain circumstances (such as when the period of the potential is close to the crystal periodicity; the potential is strong enough, etc.) it might adjust itself to follow the periodicity of the potential, resulting in a, so called, commensurate state. Such commensurate-incommensurate transitions are ubiquitous phenomena in many areas of condensed matter physics: from magnetism and dislocations in crystals, to vortices in superconductors, and atomic layers adsorbed on a crystalline surface. Of particular interest might be the properties of topological defects between the two commensurate phases: solitons, domain walls, and dislocation walls. Here we report a commensurate-incommensurate transition for graphene on top of hexagonal boron nitride (hBN). Depending on the rotational angle between the two hexagonal lattices, graphene can either stretch to adjust to a slightly different hBN periodicity (the commensurate state found for small rotational angles) or exhibit little adjustment (the incommensurate state). In the commensurate state, areas with matching lattice constants are separated by domain walls that accumulate the resulting strain. Such soliton-like objects present significant fundamental interest, and their presence might explain recent observations when the electronic, optical, Raman and other properties of graphene-hBN heterostructures have been notably altered.
We investigate the adsorption of graphene sheets on h-BN substrates by means of first-principles calculations in the framework of adiabatic connection fluctuation-dissipation theory in the random phase approximation. We obtain adhesion energies for d ifferent crystallographic stacking configurations and show that the interlayer bonding is due to long-range van der Waals forces. The interplay of elastic and adhesion energies is shown to lead to stacking disorder and moire structures. Band structure calculations reveal substrate induced mass terms in graphene which change their sign with the stacking configuration. The dispersion, absolute band gaps and the real space shape of the low energy electronic states in the moire structures are discussed. We find that the absolute band gaps in the moire structures are at least an order of magnitude smaller than the maximum local values of the mass term. Our results are in agreement with recent STM experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا