ترغب بنشر مسار تعليمي؟ اضغط هنا

The non-compact normed space of norms on a finite-dimensional Banach space

177   0   0.0 ( 0 )
 نشر من قبل Apoorva Khare
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Apoorva Khare




اسأل ChatGPT حول البحث

We discuss a new pseudometric on the space of all norms on a finite-dimensional vector space (or free module) $mathbb{F}^k$, with $mathbb{F}$ the real, complex, or quaternion numbers. This metric arises from the Lipschitz-equivalence of all norms on $mathbb{F}^k$, and seems to be unexplored in the literature. We initiate the study of the associated quotient metric space, and show that it is complete, connected, and non-compact. In particular, the new topology is strictly coarser than that of the Banach-Mazur compactum. For example, for each $k geqslant 2$ the metric subspace ${ | cdot |_p : p in [1,infty] }$ maps isometrically and monotonically to $[0, log k]$ (or $[0,1]$ by scaling the norm), again unlike in the Banach-Mazur compactum. Our analysis goes through embedding the above quotient space into a normed space, and reveals an implicit functorial construction of function spaces with diameter norms (as well as a variant of the distortion). In particular, we realize the above quotient space of norms as a normed space. We next study the parallel setting of the - also hitherto unexplored - metric space $mathcal{S}([n])$ of all metrics on a finite set of $n$ elements, revealing the connection between log-distortion and diameter norms. In particular, we show that $mathcal{S}([n])$ is also a normed space. We demonstrate embeddings of equivalence classes of finite metric spaces (parallel to the Gromov-Hausdorff setting), as well as of $mathcal{S}([n-1])$, into $mathcal{S}([n])$. We conclude by discussing extensions to norms on an arbitrary Banach space and to discrete metrics on any set, as well as some questions in both settings above.

قيم البحث

اقرأ أيضاً

We prove that on an arbitrary metric measure space a countable collection of test plans is sufficient to recover all $rm BV$ functions and their total variation measures. In the setting of non-branching ${sf CD}(K,N)$ spaces (with finite reference me asure), we can additionally require these test plans to be concentrated on geodesics.
We consider a general notion of snowflake of a metric space by composing the distance by a nontrivial concave function. We prove that a snowflake of a metric space $X$ isometrically embeds into some finite-dimensional normed space if and only if $X $ is finite. In the case of power functions we give a uniform bound on the cardinality of $X$ depending only on the power exponent and the dimension of the vector space.
In this work we study the issue of geodesic extendibility on complete and locally compact metric length spaces. We focus on the geometric structure of the space $(Sigma (X),d_H)$ of compact balls endowed with the Hausdorff distance and give an explic it isometry between $(Sigma (X),d_H)$ and the closed half-space $ Xtimes mathbb{R}_{ge 0}$ endowed with a taxicab metric. Among the applications we establish a group isometry between $mbox{Iso} (X,d)$ and $mbox{Iso} (Sigma (X),d_H)$ when $(X,d)$ is a Hadamard space.
A strong inspiration for studying perturbation theory for fractional evolution equations comes from the fact that they have proven to be useful tools in modeling many physical processes. In this paper, we study fractional evolution equations of order $alphain (1,2]$ associated with the infinitesimal generator of an operator fractional cosine function generated by bounded time-dependent perturbations in a Banach space. We show that the abstract fractional Cauchy problem associated with the infinitesimal generator $A$ of a strongly continuous fractional cosine function remains uniformly well-posed under bounded time-dependent perturbation of $A$. We also provide some necessary special cases.
A Banach space $X$ has the $Mazur$-$Ulam$ $property$ if any isometry from the unit sphere of $X$ onto the unit sphere of any other Banach space $Y$ extends to a linear isometry of the Banach spaces $X,Y$. A Banach space $X$ is called $smooth$ if the unit ball has a unique supporting functional at each point of the unit sphere. We prove that each non-smooth 2-dimensional Banach space has the Mazur-Ulam property.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا