ﻻ يوجد ملخص باللغة العربية
A strong inspiration for studying perturbation theory for fractional evolution equations comes from the fact that they have proven to be useful tools in modeling many physical processes. In this paper, we study fractional evolution equations of order $alphain (1,2]$ associated with the infinitesimal generator of an operator fractional cosine function generated by bounded time-dependent perturbations in a Banach space. We show that the abstract fractional Cauchy problem associated with the infinitesimal generator $A$ of a strongly continuous fractional cosine function remains uniformly well-posed under bounded time-dependent perturbation of $A$. We also provide some necessary special cases.
We investigate the stability of traveling-pulse solutions to the stochastic FitzHugh-Nagumo equations with additive noise. Special attention is given to the effect of small noise on the classical deterministically stable traveling pulse. Our method i
We obtain $L_p$ estimates for fractional parabolic equations with space-time non-local operators $$ partial_t^alpha u - Lu= f quad mathrm{in} quad (0,T) times mathbb{R}^d,$$ where $partial_t^alpha u$ is the Caputo fractional derivative of order $alph
This article is concerned with two inverse problems on determining moving source profile functions in evolution equations with a derivative order $alphain(0,2]$ in time. In the first problem, the sources are supposed to move along known straight line
We consider the following evolutionary Hamilton-Jacobi equation with initial condition: begin{equation*} begin{cases} partial_tu(x,t)+H(x,u(x,t),partial_xu(x,t))=0, u(x,0)=phi(x), end{cases} end{equation*} where $phi(x)in C(M,mathbb{R})$. Under some
We investigate diffusion equations with time-fractional derivatives of space-dependent variable order. We examine the well-posedness issue and prove that the space-dependent variable order coefficient is uniquely determined among other coefficients o