ﻻ يوجد ملخص باللغة العربية
Atom interferometry with high visibility is of high demand for precision measurements. Here, a parallel multicomponent interferometer is achieved by preparing a spin-$2$ Bose-Einstein condensate of $^{87}$Rb atoms confined in a hybrid magneto-optical trap. After the preparation of a spinor Bose-Einstein condensate with spin degrees of freedom entangled, we observe four spatial interference patterns in each run of measurements corresponding to four hyperfine states we mainly populate in the experiment. The atomic populations in different Zeeman sublevels are made controllably using magnetic-field-pulse induced Majorana transitions. The spatial separation of atom cloud in different hyperfine states is reached by Stern-Gerlach momentum splitting. The high visibility of the interference fringes is reached by designing a proper overlap of the interfering wave packets. Due to uncontrollable phase accumulation in Majorana transitions, the phase of each individual spin is found to be subjected to unreproducible shift in multiple experimental runs. However, the relative phase across different spins is stable, paving a way towards noise-resilient multicomponent parallel interferometers.
Most interferometers operate with photons or dilute, non-condensed cold atom clouds in which collisions are strongly suppressed. Spinor Bose-Einstein condensates (BECs) provide an alternative route toward realizing three-mode interferometers; in this
We measure the mass, gap, and magnetic moment of a magnon in the ferromagnetic $F=1$ spinor Bose-Einstein condensate of $^{87}$Rb. We find an unusually heavy magnon mass of $1.038(2)_mathrm{stat}(8)_mathrm{sys}$ times the atomic mass, as determined b
Understanding the ground state of many-body fluids is a central question of statistical physics. Usually for weakly interacting Bose gases, most particles occupy the same state, corresponding to a Bose--Einstein condensate. However, another scenario
We investigate the internal dynamics of the spinor Bose-Einstein Condensates subject to dissipation by solving the Lindblad master equation. It is shown that for the condensates without dissipation its dynamics always evolve along specific orbital in
We propose a pump scheme for quantum circulations, including counter-circulations for superposition states, of a spinor Bose-Einstein condensate. Our scheme is efficient and can be implemented within current experimental technologies and setups. It r