ترغب بنشر مسار تعليمي؟ اضغط هنا

Spinor Bose-Einstein Condensate Interferometer within the Undepleted Pump Approximation: Role of the Initial State

166   0   0.0 ( 0 )
 نشر من قبل Doerte Blume
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Most interferometers operate with photons or dilute, non-condensed cold atom clouds in which collisions are strongly suppressed. Spinor Bose-Einstein condensates (BECs) provide an alternative route toward realizing three-mode interferometers; in this realization, spin-changing collisions provide a resource that generates mode entanglement. Working in the regime where the pump mode, i.e., the m=0 hyperfine state, has a much larger population than the side or probe modes (m=+1 and m=-1 hyperfine states), f=1 spinor BECs approximate SU(1,1) interferometers. We derive analytical expressions within the undepleted pump approximation for the phase sensitivity of such an SU(1,1) interferometer for two classes of initial states: pure Fock states and coherent spin states. The interferometer performance is analyzed for initial states without seeding, with single-sided seeding, and with double-sided seeding. The validity regime of the undepleted pump approximation is assessed by performing quantum calculations for the full spin Hamiltonian. Our analytical results and the associated dynamics are expected to guide experiments as well as numerical studies that explore regimes where the undepleted pump approximation makes quantitatively or qualitatively incorrect predictions.



قيم البحث

اقرأ أيضاً

Atom interferometry with high visibility is of high demand for precision measurements. Here, a parallel multicomponent interferometer is achieved by preparing a spin-$2$ Bose-Einstein condensate of $^{87}$Rb atoms confined in a hybrid magneto-optical trap. After the preparation of a spinor Bose-Einstein condensate with spin degrees of freedom entangled, we observe four spatial interference patterns in each run of measurements corresponding to four hyperfine states we mainly populate in the experiment. The atomic populations in different Zeeman sublevels are made controllably using magnetic-field-pulse induced Majorana transitions. The spatial separation of atom cloud in different hyperfine states is reached by Stern-Gerlach momentum splitting. The high visibility of the interference fringes is reached by designing a proper overlap of the interfering wave packets. Due to uncontrollable phase accumulation in Majorana transitions, the phase of each individual spin is found to be subjected to unreproducible shift in multiple experimental runs. However, the relative phase across different spins is stable, paving a way towards noise-resilient multicomponent parallel interferometers.
178 - Z. F. Xu , P. Zhang , R. Lu 2010
We propose a pump scheme for quantum circulations, including counter-circulations for superposition states, of a spinor Bose-Einstein condensate. Our scheme is efficient and can be implemented within current experimental technologies and setups. It r emains valid for non-classical atomic states, such as pseudo-spin squeezed states and maximal entangled N-GHZ or NooN states. Moreover, it is capable of transforming several enhanced sensing protocols relying on reduced fluctuations from quantum correlation and entanglement of atomic internal states to enhanced measurement of spatial interference and rotation.
Topological phase imprinting is a well-established technique for deterministic vortex creation in spinor Bose-Einstein condensates of alkali metal atoms. It was recently shown that counter-diabatic quantum control may accelerate vortex creation in co mparison to the standard adiabatic protocol and suppress the atom loss due to nonadiabatic transitions. Here we apply this technique, assisted by an optical plug, for vortex pumping to theoretically show that sequential phase imprinting up to 20 cycles generates a vortex with a very large winding number. Our method significantly increases the fidelity of the pump for rapid pumping compared to the case without the counter-diabatic control, leading to the highest angular momentum per particle reported to date for the vortex pump. Our studies are based on numerical integration of the three-dimensional multi-component Gross-Pitaevskii equation which conveniently yields the density profiles, phase profiles, angular momentum, and other physically important quantities of the spin-1 system. Our results motivate the experimental realization of the vortex pump and studies of the rich physics it involves.
150 - Man-Man Pang , Yajiang Hao 2016
We investigate the internal dynamics of the spinor Bose-Einstein Condensates subject to dissipation by solving the Lindblad master equation. It is shown that for the condensates without dissipation its dynamics always evolve along specific orbital in the phase space of ($n_0$, $theta$) and display three kinds of dynamical properties including Josephson-like oscillation, self-trapping-like oscillation and running phase. In contrast, the condensates subject to dissipation will not evolve along the specific dynamical orbital. If component-1 and component-(-1) dissipate in different rates, the magnetization $m$ will not conserve and the system transits between different dynamical regions. The dynamical properties can be exhibited in the phase space of ($n_0$, $theta$, $m$).
One of the excitements generated by the cold atom systems is the possibility to realize, and explore, varied topological phases stemming from multi-component nature of the condensate. Popular examples are the antiferromagnetic (AFM) and the ferromagn etic (FM) phases in the three-component atomic condensate with effective spin-1, to which different topological manifolds can be assigned. It follows, from consideration of homotopy, that different sorts of topological defects will be stable in each manifold. For instance, Skyrmionic texture is believed to be a stable topological object in two-dimensional AFM spin-1 condensate. Countering such common perceptions, here we show on the basis of a new wave function decomposition scheme that there is no physical parameter regime wherein the temporal dynamics of spin-1 condensate can be described solely within AFM or FM manifold. Initial state of definite topological number prepared entirely within one particular phase must immediately evolve into a mixed state. Accordingly, the very notion of topology and topological stability within the sub-manifold of AFM or FM become invalid. Numerical simulation reveals the linear Zeeman effect to be an efficient catalyst to extract the alternate component from an initial topological object prepared entirely within one particular sub-manifold, serving as a potential new tool for topology engineering in multi-component Bose-Einstein condensates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا