ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory and experiments of coherent photon coupling in semiconductor nanowire waveguides with quantum dot molecules

47   0   0.0 ( 0 )
 نشر من قبل Chelsea Carlson
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a quantum optics theory, numerical calculations, and experiments on coupled quantumdots in semiconductor nanowire waveguides. We first present an analytical Green function theory tocompute the emitted spectra of two coupled quantum dots, treated as point dipoles, fully accountingfor retardation effects, and demonstrate the signatures of coherent and incoherent coupling througha pronounced splitting of the uncoupled quantum dot resonances and modified spectral broadening.In the weak excitation regime, the classical Green functions used in models are verified and justifiedthrough full 3D solutions of Maxwell equations for nanowire waveguides, specifically using finite-difference time-domain techniques, showing how both waveguide modes and near-field evanescentmode coupling is important. The theory exploits an ensemble-based quantum description, and andan intuitive eigenmode-expansion based Maxwell theory. We then demonstrate how the molecularresonances (in the presence of coupling) take on the form of bright and dark (or quasi-dark) reso-nances, and study how these depend on the excitation and detection conditions. To go beyond theweak excitation regime, we also introduce a quantum master equation approach to model the non-linear spectra from an increasing incoherent pump field, which shows the role of the pump field onthe oscillator strengths and broadening of the molecular resonances, with and without pure dephas-ing. Next, we present experimental photoluminescence spectra for spatially-separated quantum dotmolecules (InAsP) in InP nanowires, which show clear signatures of pronounced splittings, thoughthey also highlight additional mechanisms that are not accounted for in the dipole-dipole couplingmodel. Two different approaches are taken to control the spatial separation of the quantum dotmolecules, and we discuss the advantages and disadvantages of each.

قيم البحث

اقرأ أيضاً

We demonstrate the ability to control quantum coherent Rabi-oscillations in a room-temperature quantum dot semiconductor optical amplifier (SOA) by shaping the light pulses that trigger them. The experiments described here show that when the excitati on is resonant with the short wavelength slope of the SOA gain spectrum, a linear frequency chirp affects its ability to trigger Rabi-oscillations within the SOA: A negative chirp inhibits Rabi-oscillations whereas a positive chirp can enhance them, relative to the interaction of a transform limited pulse. The experiments are confirmed by a numerical calculation that models the propagation of the experimentally shaped pulses through the SOA.
In this Letter, we present a physical scheme for implementing the discrete quantum Fourier transform in a coupled semiconductor double quantum dot system. The main controlled-R gate operation can be decomposed into many simple and feasible unitary tr ansformations. The current scheme would be a useful step towards the realization of complex quantum algorithms in the quantum dot system.
Multi-electron semiconductor quantum dots have found wide application in qubits, where they enable readout and enhance polarizability. However, coherent control in such dots has typically been restricted to only the lowest two levels, and such contro l in the strongly interacting regime has not been realized. Here we report quantum control of eight different resonances in a silicon-based quantum dot. We use qubit readout to perform spectroscopy, revealing a dense set of energy levels with characteristic spacing far smaller than the single-particle energy. By comparing with full configuration interaction calculations, we argue that the dense set of levels arises from Wigner-molecule physics.
130 - Zhi-Hai Liu , Rui Li 2018
We study the impacts of the magnetic field direction on the spin-manipulation and the spin-relaxation in a one-dimensional quantum dot with strong spin-orbit coupling. The energy spectrum and the corresponding eigenfunctions in the quantum dot are ob tained exactly. We find that no matter how large the spin-orbit coupling is, the electric-dipole spin transition rate as a function of the magnetic field direction always has a $pi$ periodicity. However, the phonon-induced spin relaxation rate as a function of the magnetic field direction has a $pi$ periodicity only in the weak spin-orbit coupling regime, and the periodicity is prolonged to $2pi$ in the strong spin-orbit coupling regime.
Nanoscale amplification of non-linear processes in solid-state devices opens novel applications in nano-electronics, nano-medicine or high energy conversion for example. Coupling few nano-joules laser energy at a nanometer scale for strong field phys ics is demonstrated. We report enhancement of high harmonic generation in nano-structured semiconductors using nanoscale amplification of a mid-infrared laser in the sample rather than using large laser amplifier systems. Field amplification is achieved through light confinement in nano-structured semiconductor 3D waveguides. The high harmonic nano-converter consists of an array of zinc-oxide nanocones. They exhibit a large amplification volume, 6 orders of magnitude larger than previously reported and avoid melting observed in metallic plasmonic structures. The amplification of high harmonics is observed by coupling only 5-10 nano-joules of a 3.2 {mu}m high repetition-rate OPCPA laser at the entrance of each nanocone. Harmonic amplification (factor 30) depends on the laser energy input, wavelength and nanocone geometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا