ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent control and spectroscopy of a semiconductor quantum dot Wigner molecule

134   0   0.0 ( 0 )
 نشر من قبل Joelle Corrigan
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Multi-electron semiconductor quantum dots have found wide application in qubits, where they enable readout and enhance polarizability. However, coherent control in such dots has typically been restricted to only the lowest two levels, and such control in the strongly interacting regime has not been realized. Here we report quantum control of eight different resonances in a silicon-based quantum dot. We use qubit readout to perform spectroscopy, revealing a dense set of energy levels with characteristic spacing far smaller than the single-particle energy. By comparing with full configuration interaction calculations, we argue that the dense set of levels arises from Wigner-molecule physics.



قيم البحث

اقرأ أيضاً

139 - L. Gaudreau , G. Granger , A. Kam 2011
Spin qubits involving individual spins in single quantum dots or coupled spins in double quantum dots have emerged as potential building blocks for quantum information processing applications. It has been suggested that triple quantum dots may provid e additional tools and functionalities. These include the encoding of information to either obtain protection from decoherence or to permit all-electrical operation, efficient spin busing across a quantum circuit, and to enable quantum error correction utilizing the three-spin Greenberger-Horn-Zeilinger quantum state. Towards these goals we demonstrate for the first time coherent manipulation between two interacting three-spin states. We employ the Landau-Zener-Stuckelberg approach for creating and manipulating coherent superpositions of quantum states. We confirm that we are able to maintain coherence when decreasing the exchange coupling of one spin with another while simultaneously increasing its coupling with the third. Such control of pairwise exchange is a requirement of most spin qubit architectures but has not been previously demonstrated.
We probe local charge fluctuations in a semiconductor via laser spectroscopy on a nearby self-assembled quantum dot. We demonstrate that the quantum dot is sensitive to changes in the local environment at the single charge level. By controlling the c harge state of localized defects, we are able to infer the distance of the defects from the quantum dot with +-5 nm resolution. The results identify and quantify the main source of charge noise in the commonly-used optical field-effect devices. Based on this understanding we achieve routinely close-totransform-limited quantum dot optical linewidths.
In this work we demonstrate theoretically how to use external laser field to control the population inversion of a single quantum dot exciton qubit in a nanocavity. We consider the Jaynes-Cummings model to describe the system, and the incoherent loss es were take into account by using Lindblad operators. We have demonstrated how to prepare the initial state in a superposition of the exciton in the ground state and the cavity in a coherent state. The effects of exciton-cavity detuning, the laser-cavity detunings, the pulse area and losses over the qubit dynamics are analyzed. We also show how to use a continuous laser pumping in resonance with the cavity mode to sustain a coherent state inside the cavity, providing some protection to the qubit against cavity loss.
We demonstrate the effects of cavity quantum electrodynamics for a quantum dot coupled to a photonic molecule, consisting of a pair of coupled photonic crystal cavities. We show anti-crossing between the quantum dot and the two super-modes of the pho tonic molecule, signifying achievement of the strong coupling regime. From the anti-crossing data, we estimate the contributions of both mode-coupling and intrinsic detuning to the total detuning between the super-modes. Finally, we also show signatures of off-resonant cavity-cavity interaction in the photonic molecule.
100 - V. Tiwari , M. Arino , S. Gupta 2021
We study a new diluted magnetic semiconductor system based on the spin of the ionized acceptor Cr$^+$. We show that the negatively charged Cr$^+$ ion, an excited state of the Cr in II-VI semiconductor, can be stable when inserted in a CdTe quantum do t (QD). The Cr$^+$ attracts a heavy-hole in the QD and form a stable hole-Cr$^+$ complex. Optical probing of this system reveals a ferromagnetic coupling between heavy-holes and Cr$^+$ spins. At low temperature, the thermalization on the ground state of the hole-Cr$^+$ system with parallel spins prevents the optical recombination of the excess electron on the 3$d$ shell of the atom. We study the dynamics of the nano-magnet formed by the hole-Cr$^+$ exchange interaction. The ferromagnetic ground states with M$_z$=$pm$4 can be controlled by resonant optical pumping and a spin relaxation time in the 20 $mu$s range is obtained at T=4.2 K. This spin memory at zero magnetic field is limited by the interaction with phonons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا