ترغب بنشر مسار تعليمي؟ اضغط هنا

Simple and efficient algorithms for training machine learning potentials to force data

205   0   0.0 ( 0 )
 نشر من قبل Kipton Barros
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Abstract Machine learning models, trained on data from ab initio quantum simulations, are yielding molecular dynamics potentials with unprecedented accuracy. One limiting factor is the quantity of available training data, which can be expensive to obtain. A quantum simulation often provides all atomic forces, in addition to the total energy of the system. These forces provide much more information than the energy alone. It may appear that training a model to this large quantity of force data would introduce significant computational costs. Actually, training to all available force data should only be a few times more expensive than training to energies alone. Here, we present a new algorithm for efficient force training, and benchmark its accuracy by training to forces from real-world datasets for organic chemistry and bulk aluminum.

قيم البحث

اقرأ أيضاً

Machine learning surrogate models for quantum mechanical simulations has enabled the field to efficiently and accurately study material and molecular systems. Developed models typically rely on a substantial amount of data to make reliable prediction s of the potential energy landscape or careful active learning and uncertainty estimates. When starting with small datasets, convergence of active learning approaches is a major outstanding challenge which limited most demonstrations to online active learning. In this work we demonstrate a $Delta$-machine learning approach that enables stable convergence in offline active learning strategies by avoiding unphysical configurations. We demonstrate our frameworks capabilities on a structural relaxation, transition state calculation, and molecular dynamics simulation, with the number of first principle calculations being cut down anywhere from 70-90%. The approach is incorporated and developed alongside AMPtorch, an open-source machine learning potential package, along with interactive Google Colab notebook examples.
288 - Chi Chen , Zhi Deng , Richard Tran 2017
In this work, we present a highly accurate spectral neighbor analysis potential (SNAP) model for molybdenum (Mo) developed through the rigorous application of machine learning techniques on large materials data sets. Despite Mos importance as a struc tural metal, existing force fields for Mo based on the embedded atom and modified embedded atom methods still do not provide satisfactory accuracy on many properties. We will show that by fitting to the energies, forces and stress tensors of a large density functional theory (DFT)-computed dataset on a diverse set of Mo structures, a Mo SNAP model can be developed that achieves close to DFT accuracy in the prediction of a broad range of properties, including energies, forces, stresses, elastic constants, melting point, phonon spectra, surface energies, grain boundary energies, etc. We will outline a systematic model development process, which includes a rigorous approach to structural selection based on principal component analysis, as well as a differential evolution algorithm for optimizing the hyperparameters in the model fitting so that both the model error and the property prediction error can be simultaneously lowered. We expect that this newly developed Mo SNAP model will find broad applications in large-scale, long-time scale simulations.
The universal mathematical form of machine-learning potentials (MLPs) shifts the core of development of interatomic potentials to collecting proper training data. Ideally, the training set should encompass diverse local atomic environments but the co nventional approach is prone to sampling similar configurations repeatedly, mainly due to the Boltzmann statistics. As such, practitioners handpick a large pool of distinct configurations manually, stretching the development period significantly. Herein, we suggest a novel sampling method optimized for gathering diverse yet relevant configurations semi-automatically. This is achieved by applying the metadynamics with the descriptor for the local atomic environment as a collective variable. As a result, the simulation is automatically steered toward unvisited local environment space such that each atom experiences diverse chemical environments without redundancy. We apply the proposed metadynamics sampling to H:Pt(111), GeTe, and Si systems. Throughout the examples, a small number of metadynamics trajectories can provide reference structures necessary for training high-fidelity MLPs. By proposing a semi-automatic sampling method tuned for MLPs, the present work paves the way to wider applications of MLPs to many challenging applications.
Machine learning of atomic-scale properties is revolutionizing molecular modelling, making it possible to evaluate inter-atomic potentials with first-principles accuracy, at a fraction of the costs. The accuracy, speed and reliability of machine-lear ning potentials, however, depends strongly on the way atomic configurations are represented, i.e. the choice of descriptors used as input for the machine learning method. The raw Cartesian coordinates are typically transformed in fingerprints, or symmetry functions, that are designed to encode, in addition to the structure, important properties of the potential-energy surface like its invariances with respect to rotation, translation and permutation of like atoms. Here we discuss automatic protocols to select a number of fingerprints out of a large pool of candidates, based on the correlations that are intrinsic to the training data. This procedure can greatly simplify the construction of neural network potentials that strike the best balance between accuracy and computational efficiency, and has the potential to accelerate by orders of magnitude the evaluation of Gaussian Approximation Potentials based on the Smooth Overlap of Atomic Positions kernel. We present applications to the construction of neural network potentials for water and for an Al-Mg-Si alloy, and to the prediction of the formation energies of small organic molecules using Gaussian process regression.
This work presents Neural Equivariant Interatomic Potentials (NequIP), a SE(3)-equivariant neural network approach for learning interatomic potentials from ab-initio calculations for molecular dynamics simulations. While most contemporary symmetry-aw are models use invariant convolutions and only act on scalars, NequIP employs SE(3)-equivariant convolutions for interactions of geometric tensors, resulting in a more information-rich and faithful representation of atomic environments. The method achieves state-of-the-art accuracy on a challenging set of diverse molecules and materials while exhibiting remarkable data efficiency. NequIP outperforms existing models with up to three orders of magnitude fewer training data, challenging the widely held belief that deep neural networks require massive training sets. The high data efficiency of the method allows for the construction of accurate potentials using high-order quantum chemical level of theory as reference and enables high-fidelity molecular dynamics simulations over long time scales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا