ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigation of the thermal and hydraulic properties of a novel heat exchanger for smart heat supply systems

89   0   0.0 ( 0 )
 نشر من قبل Dmitry Loginov
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this study, analysis of shell and tube heat exchanger (HE) is performed. Theory part on heat transfer, calculation of heat exchanger and general thermal and hydrological properties are described. Several models are developed and computed in different cases: plain tubes and twisted tubes; common and separated inlet and outlet; heat exchanger with different baffles and geometry inside a shell; changed gas matter, tubes material, tubes thickness; modification of inlet and outlet. Twisted tubes shows better heat transfer efficiency than plain tubes. Baffles increase intensity of water mixing but dead zones can be formed in some cases. Length of air inlet and outlet influence on temperature distribution that is important for location of measuring systems. Experimental setup for a gas-liquid case is being created to verify the modelling and test new heat exchanger.

قيم البحث

اقرأ أيضاً

This study investigates one of the possible approaches of improvement of heat exchangers efficiency. Literature review shows that most approaches of improvement are based on the heat transfer surface increasing and laminar-to-turbulent flow transitio n using different types of riffles forming and shaped inserts. In this article, a novel approach to the heat transfer intensification was employed. The main hypothesis is that applying of multi-chamber design of heat exchanger - ordinary shell-and-tube regions intersperse with common for all tubes regions - will help to improve the utilization of the entrance hydraulic and thermal regions thereby receive higher heat transfer coefficients and higher heat capacity of the heat exchange device. To prove the hypotheses we take the following steps. Firstly, development of the new geometry of the heat-exchanger design - multi chambers construction. Secondly, proving of the higher efficiency of novel design comparing to ordinary design by analytical calculations. Thirdly, numerical simulation of the heat exchange process and fluids flow in both types of heat exchangers that proves the analytical solution.
73 - X. Liu , Z. Xie , S. Dong 2019
We present an effective thermal open boundary condition for convective heat transfer problems on domains involving outflow/open boundaries. This boundary condition is energy-stable, and it ensures that the contribution of the open boundary will not c ause an ``energy-like temperature functional to increase over time, irrespective of the state of flow on the open boundary. It is effective in coping with thermal open boundaries even in flow regimes where strong vortices or backflows are prevalent on such boundaries, and it is straightforward to implement. Extensive numerical simulations are presented to demonstrate the stability and effectiveness of our method for heat transfer problems with strong vortices and backflows occurring on the open boundaries. Simulation results are compared with previous works to demonstrate the accuracy of the presented method.
Compact and small-scale heat exchangers can handle high heat dissipation rates due to their large surface area to volume ratios. Applications involving high heat dissipation rates include, but are not limited to, compact microelectronic processing un its, high power laser arrays, fuel cells, as well as fission batteries. Low maintenance cost, small size and dimensions, as well as high convective heat transfer coefficients, make micro-scale heat sinks an efficient and reliable cooling solution for applications with high heat dissipation rates. Despite these advantages, the large pressure drop that occurs within micro-scale heat sinks has restricted their utilization. Slip at the walls of microchannels has been reported to reduce friction factor up to 30%, depending on the hydraulic diameter of the microchannel. Numerical investigations are conducted to comprehensively investigate the effect of slip at walls on friction factor and Nusselt number of liquid flows in micro-scale heat sinks. At the same mass flow rate and inlet Reynolds number, obtained results suggest that slip length on the order of 2 microns enhances the overall thermalhydraulic performance of micro heat sinks by almost 6% in comparison with no-slip boundary conditions. 4% increase is observed in channel average Nusselt number while pumping power reduces by 8% in comparison with no-slip boundary condition.
Liquid-xenon based particle detectors have been dramatically growing in size during the last years, and are now exceeding the one-ton scale. The required high xenon purity is usually achieved by continuous recirculation of xenon gas through a high-te mperature getter. This challenges the traditional way of cooling these large detectors, since in a thermally well insulated detector, most of the cooling power is spent to compensate losses from recirculation. The phase change during recondensing requires five times more cooling power than cooling the gas from ambient temperature to -100C (173 K). Thus, to reduce the cooling power requirements for large detectors, we propose to use the heat from the purified incoming gas to evaporate the outgoing xenon gas, by means of a heat exchanger. Generally, a heat exchanger would appear to be only of very limited use, since evaporation and liquefaction occur at zero temperature difference. However, the use of a recirculation pump reduces the pressure of the extracted liquid, forces it to evaporate, and thus cools it down. We show that this temperature difference can be used for an efficient heat exchange process. We investigate the use of a commercial parallel plate heat exchanger with a small liquid xenon detector. Although we expected to be limited by the available cooling power to flow rates of about 2 SLPM, rates in excess of 12 SLPM can easily be sustained, limited only by the pump speed and the impedance of the flow loop. The heat exchanger operates with an efficiency of (96.8 +/- 0.5)%. This opens the possibility for fast xenon gas recirculation in large-scale experiments, while minimizing thermal losses.
Multiscale modelling methodologies build macroscale models of materials with complicated fine microscale structure. We propose a methodology to derive boundary conditions for the macroscale model of a prototypical non-linear heat exchanger. The deriv ed macroscale boundary conditions improve the accuracy of macroscale model. We verify the new boundary conditions by numerical methods. The techniques developed here can be adapted to a wide range of multiscale reaction-diffusion-advection systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا