ﻻ يوجد ملخص باللغة العربية
We study coefficients of axial chiral vortical effect and chiral separation effect at finite temperature and vector chemical potential in massive theories. We present two independent methods of calculating the coefficients: one from field theory and the other using the mass term in axial anomaly equation. An ambiguity in the integration constant similar to hydrodynamic approach to axial chiral vortical effect exists in the latter, but can be fixed naturally in the presence of mass. We obtain perfect agreement between the methods. The results of axial chiral vortical effect and chiral separation effect indicate that the presence of mass generically suppresses the two coefficients, with less suppression at larger chemical potential. For phenomenologically relevant case of quark gluon plasma with three quark flavor, we find the correction is negligible.
We consider photonic vortical effect, i.e. the difference of the flows of left- and right-handed photons along the vector of angular velocity in rotating photonic medium. Two alternative frameworks to evaluate the effect are considered, both of which
We study the chiral vortical effect far from equilibrium in a strongly coupled holographic field theory. Rotation is represented as a perturbation via a gravito-magnetic field on top of a five-dimensional charged AdS Vaidya metric. We also introduce
We consider the theory of Rarita-Schwinger field interacting with a field with spin 1/2, in the case of finite temperature, chemical potential and vorticity, and calculate the chiral vortical effect for spin 3/2. We have clearly demonstrated the role
We formulate the chiral vortical effect (CVE) and its generalization called generalized vortical effect using the semiclassical theory of wave packet dynamics. We take the spin-vorticity coupling into account and calculate the transport charge curren
We employ a 3+1D anomalous hydrodynamics with initial condition generated by HIJING to simulate the chiral vortical effect and the chiral magnetic effect in heavy-ion collisions. This allows us to calculate the charge-dependent two-particle correlati