ترغب بنشر مسار تعليمي؟ اضغط هنا

On Mass correction to Chiral Vortical Effect and Chiral Separation Effect

116   0   0.0 ( 0 )
 نشر من قبل Shu Lin
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study coefficients of axial chiral vortical effect and chiral separation effect at finite temperature and vector chemical potential in massive theories. We present two independent methods of calculating the coefficients: one from field theory and the other using the mass term in axial anomaly equation. An ambiguity in the integration constant similar to hydrodynamic approach to axial chiral vortical effect exists in the latter, but can be fixed naturally in the presence of mass. We obtain perfect agreement between the methods. The results of axial chiral vortical effect and chiral separation effect indicate that the presence of mass generically suppresses the two coefficients, with less suppression at larger chemical potential. For phenomenologically relevant case of quark gluon plasma with three quark flavor, we find the correction is negligible.



قيم البحث

اقرأ أيضاً

We consider photonic vortical effect, i.e. the difference of the flows of left- and right-handed photons along the vector of angular velocity in rotating photonic medium. Two alternative frameworks to evaluate the effect are considered, both of which have already been tried in the literature. First, the standard thermal fied theory and, alternatively, Hawking-radiation-type derivation. In our earlier attempt to compare the two approaches, we found a crucial factor of two difference. Here we revisit the problem, paying more attention to details of infrared regularizations. We find out that introduction of an infinitesimal mass of the vector field brings the two ways of evaluating the chiral vortical effect into agreement with each other. Some implications, both on the theoretical and phenomenological sides, are mentioned.
We study the chiral vortical effect far from equilibrium in a strongly coupled holographic field theory. Rotation is represented as a perturbation via a gravito-magnetic field on top of a five-dimensional charged AdS Vaidya metric. We also introduce a momentum relaxation mechanism by linear scalar field backgrounds and study the CVE dynamics as function of the charges, temperature and momentum relaxation. The far from equilibrium behavior shows that the CVE builds up with a significant delay in time compared to the quasi instantaneous equilibration of the background metric. We also pay special attention to the effects of the gravitational contribution to the axial anomaly in the CVE of the axial current. We develop an analytic estimate of this delay and also compute the quasi-normal modes near equilibrium which determine the late time ring down.
We consider the theory of Rarita-Schwinger field interacting with a field with spin 1/2, in the case of finite temperature, chemical potential and vorticity, and calculate the chiral vortical effect for spin 3/2. We have clearly demonstrated the role of interaction with the spin 1/2 field, the contribution of the terms with which to CVE is 6. Since the contribution from the Rarita-Schwinger field is -1, the overall coefficient in CVE is 6-1=5, which corresponds to the recent prediction of a gauge chiral anomaly for spin 3/2. The obtained values for the coefficients $mu^2$ and $T^2$ are proportional to each other, but not proportional to the spin, which indicates a possible new universality between the temperature-related and the chemical potential-related vortical effects. The results obtained allow us to speculate about the relationship between the gauge and gravitational chiral anomalies.
We formulate the chiral vortical effect (CVE) and its generalization called generalized vortical effect using the semiclassical theory of wave packet dynamics. We take the spin-vorticity coupling into account and calculate the transport charge curren t by subtracting the magnetization one from the Noether local one. We find that the transport charge current in the CVE always vanishes in relativistic chiral fermions. This result implies that it cannot be observed in transport experiments in condensed matter systems such as Dirac/Weyl semimetals with the pseudo-Lorentz symmetry. We also demonstrate that the anisotropic CVE can be observed in nonrelativistic systems that belong to the point groups $D_n, C_n (n = 2, 3, 4, 6)$, and $C_1$, such as $n$-type tellurium.
We employ a 3+1D anomalous hydrodynamics with initial condition generated by HIJING to simulate the chiral vortical effect and the chiral magnetic effect in heavy-ion collisions. This allows us to calculate the charge-dependent two-particle correlati ons with respect to the reaction plane at different collision energies and centralities. We then compare the computed results with the experimental data and give discussions on the possible background effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا